

DESIGN CALCULATIONS & DRAWINGS

Three Barrel Culvert Replacement

90% SUBMITTAL FOR REVIEW

VERN FREEMAN DIVERSION CONVEYANCE SYSTEM

Ventura County, California

Gannett Fleming Project No. 067376

For

Northwest Hydraulic Consultants

August 14, 2023

2251 DOUGLAS BLVD. STE. 200 ROSEVILLE, CA 95661 916.677.4800

Table of Contents

DESIGN OVERVIEW	1
Introduction	1
References	1
Project Background	2
Summary of Work	3
Existing Conditions	3
Channel System	3
Flood Control Levee	4
Cross-Channel Flood/Drainage Ditch System	5
Other Utilities	6
Design Description	6
Cross-Channel Flood/Drainage Ditch System	7
Design Criteria and Loads	7
Hydraulic Design	7
Civil Design	8
Geotechnical Design	8
Structural Design	8
Design Procedure	9
Cast-in-Place Reinforced Concrete Box Culverts	9
Reinforced Concrete Retaining Headwalls and Wingwalls	9
Cross-Channel Flood/Drainage Ditch System	10
Hydraulic Design	11
Limitations	12
ATTACHMENT A – 90% DESIGN DRAWINGS	A
ATTACHMENT B – GEOTECHNICAL EVALUATION MEMORANDUM	B
ATTACHMENT C – REFERENCE INFORMATION REGARDING EXISTING GAS LINE	C
ATTACHMENT D – DESIGN CALCULATIONS	D

Gannett Fleming, Inc.

Suite 200 • 2251 Douglas Blvd • Roseville, CA 95661 t: 916.677.4800 www.**gannettfleming**.com

DESIGN OVERVIEW

INTRODUCTION

Provided herein are the 90% design criteria for the replacement of the three barrel culvert (TBC) road crossing over the Vern Freeman (Freeman) Diversion Conveyance System, owned and operated by the United Water Conservation District (United), in Ventura County, California. This report includes design information for the project that has been updated, revised, or progressed since the draft 30% design submittal (Ref. 1). The TBC redesign described herein includes changes and requirements outlined in reviews (Refs. 2 & 3) from the Ventura County Watershed Protection District (VCWPD).

REFERENCES

- 1. Design Criteria & Drawings, Three Barrel Culvert, Draft 30% Submittal for Review, Vern Freeman Diversion Conveyance System, Ventura County, California, Gannett Fleming Project No. 067376, prepared by Gannett Fleming, dated October 13, 2020.
- 2. Permit 2021-019 Project 8D103, Review of 30% Plans Replacement of Santa Clara River Levee Penetration, Zone 2 Freeman Diversion Ventura County, California, prepared by VCWPD, dated April 29, 2021.
- 3. Permit 2021-019 Project 8D103, Review of 30% Plans Replacement of Santa Clara River Levee Penetration, Zone 2 Freeman Diversion Ventura County, California, prepared by VCWPD, dated August 10, 2021.
- 4. Design Drawings for Inverted Siphon Replacement at the Vern Freeman Diversion Conveyance System, Ventura County, CA, (AFC Drawings), prepared by Gannett Fleming, dated June 10, 2022.
- 5. VFD Three Barrel Culvert and Inverted Siphon Design Alternatives Analysis Technical Memorandum, prepared by NHC, dated July 16, 2020.
- 6. *United 3BC*, Email Correspondence from Ed Wallace (NHC) to Jennifer Allen (Gannett Fleming), prepared by NHC, dated November 6, 2022.
- Preliminary Geotechnical Evaluation 30% Design, Vern Freeman Diversion System: Three Barrel Culvert & Inverted Siphon, United Water Conservation District Saticoy Facility, Ventura County, California, Project No. 67376, prepared by Gannett Fleming, dated September 30, 2020.
- 8. Lower River System, Main Supply Line, Culvert, STA 40+80.40 to STA 41+85.40, As-Built Drawing (M-100-15), prepared by United, dated March 19, 1962.
- 9. *Canal Pothole Drawing United Water Company*, Hand-Drawn Drawing Titled "United Pothole Drawing 404 Sec 4A", prepared by United, unknown date.
- 10. *RE: TBC 30% Design*, Email Correspondence from Bryce Cruey (NHC) to Jennifer Allen (Gannett Fleming), prepared by NHC, dated September 25, 2020.
- 11. Sediment Transport and Deposition Assessment of the Freeman Diversion Conveyance System, Phase 1: Existing System Performance. Project 6000088, prepared by NHC, dated January 7, 2015.
- 12. Sediment Transport and Deposition Assessment of the Freeman Diversion Conveyance System, Phase 2: Evaluate Alternatives. Project 6000785, prepared by NHC, dated September 1, 2016.
- 13. EM 1110-2-2902 Conduits, Pipes, and Culverts Associated with Dams and Levee Systems, Engineer Manual, prepared by USACE, dated December 31, 2020.

- 14. Santa Clara River Levee and Appurtenances Foundation Investigation Record Drawing As-Constructed Cont. No. 59-159 Rev. Date 28 Jun 61, prepared by USACE – Office of the District Engineer, Los Angeles CA.
- 15. Lower River System Main Supply Line Culvert STA 40+80.40 to STA 41+85.40 Drawing C-2, M-100-15, prepared by United, dated August 3, 1954 (marked As-Built 20 Feb 1956 and marked revised with Note 8 19 Mar 1962).
- 16. HEC-RAS River Analysis System Version 5.07, prepared by USACE Hydrologic Engineering Center, 2016.

PROJECT BACKGROUND

Freeman Diversion Conveyance System hydraulics were analyzed by Northwest Hydraulic Consultants (NHC) in Phase 1 of a sediment transport assessment, and flow capacity restrictions were identified at United's existing TBC, inverted siphon facilities, and other facilities. The present design flow for the canal is 375 cubic feet per second (cfs), but United's goal is to increase the system-wide capacity to 750 cfs, thereby requiring improvements to the TBC and inverted siphon. Potential modifications to the TBC were identified in the Phase 2 evaluation of alternatives for improvement of the conveyance system (Ref. 12), and design is being completed in this project. NHC has been leading the hydraulic design and topographic survey efforts for the project, with Gannett Fleming being retained to perform geotechnical, structural, and civil design (Ref. 1). Construction plans for the inverted siphon replacement were completed in June 2022 (Ref. 4); the focus of this design report hereafter is for the replacement of the TBC facility.

In July 2020, NHC performed an alternatives analysis in conjunction with a hydraulic analysis of the redesign options for both the TBC and inverted siphon facilities (Ref. 5). Based on their analyses and discussions with United and Gannett Fleming, NHC proposed the most viable option for the TBC redesign as replacing the existing three barrel (round) culverts with two higher-capacity box culverts, including replacement of the existing flow control gates, as required by VCWPD.

In October 2020, NHC and Gannett Fleming prepared a Draft 30% Design Submittal package for United to provide to VCWPD (Ref. 1). VCWPD completed two sets of preliminary reviews between April and August 2021, in which they presented several considerations to United for revising the TBC's replacement to meet standards set by both Ventura County and the United States Army Corps of Engineers (USACE), particularly due to the Freeman system located within the USACE-regulated Santa Clara River levee system (Refs. 2 & 3). While re-evaluating the TBC's replacement, United elected to continue moving forward with the inverted siphon's replacement, thereby separating the construction plans for each facility within this project.

In November 2022, NHC completed their initial re-evaluation of their hydraulic design for the TBC and re-engaged Gannett Fleming to provide structural and civil design of the new design (Ref. 6). As part of the revised TBC project, NHC and Gannett Fleming coordinated with United to ensure existing features, utilities, and facilities around the TBC are accommodated for or are accordingly improved with the new system.

SUMMARY OF WORK

Gannett Fleming performed a preliminary geotechnical evaluation of the project site in September 2020 (Ref. 7; see Attachment B). Subsequent discussions with NHC and United regarding site conditions and desired redesign options established the geotechnical and structural design criteria for the TBC replacement.

Gannett Fleming coordinated with NHC and United to further incorporate the revised hydraulic design and VCWPD and USACE requirements/standards (Refs. 2 & 3). Through these coordination efforts and revised redesign considerations, Gannett Fleming prepared the design criteria outlined below for use in preparing the 90% revised design drawings (see Attachment A) and design calculations (see Attachment D) for the replacement of the TBC.

EXISTING CONDITIONS

Channel System

Flows in the existing channel are regulated at the Freeman Diversion, approximately 1.5 miles upstream of the TBC. The diversion is a concrete river intake equipped with a trash rack, closure slide gates, a fish screen, and channel-regulating slides gates. The diversion structure can isolate the channel system from the river during flood events. Flows in the diversion channel pass through a headworks and piping system and are diverted using two sets of slide gates through a desilting basin upstream of the TBC site. The desilting basin removes sediment from the flows to reduce maintenance and improve percolation in groundwater recharge basins located downstream of the TBC site. Flows are returned to the channel from the desilting basin through a set of slide gates. The existing channel is a rock-lined trapezoidal channel with a top width of approximately 60 feet and a depth of approximately 12 feet at the road crossing. The rock lining in the area immediately adjacent to the crossing is grouted in place. The existing TBC culverts are equipped with flap gates on the upstream end that are each secured in the open position by cables extending to a box (presumably containing a cable reel) mounted on concrete pedestals behind the headwall (Figure 1). The gates are not shown on as-built drawings for the structure dated 1956 (Ref. 15), but there is a note added in 1962 stating that the structure was modified in 1959 in conjunction with construction of the federal flood control levee. The gates are noted to be "...normally open [and] held by cables; manual release effects closure during floods".

United has no record of operation of the gates since installation.

Figure 1: Looking West at Existing Channel and Road Crossing

Flood Control Levee

The TBC site is located at the upstream end of the federal flood control levee, and the TBC culverts are a penetration through the levee to carry diversion flows from upstream of the levee into the area protected by the levee downstream. The levee was constructed by the USACE and is maintained by VCWPD. The levee location and top of levee profile are shown on a March 1959 foundation investigation drawing sheet for the Santa Clara River Levee (USACE, 1959). Figure 2 shows the levee alignment in relation to the TBC crossing.

Figure 2: Levee Alignment and TBC Crossing (Photo from Google Earth, 2019)

Cross-Channel Flood/Drainage Ditch System

The road crossing of the channel serves the agricultural land to the south and provides access to a road along the south side of the channel upstream of the TBC site. This road is used by VCWPD to access a depression or linear basin (noted as a flood/drainage ditch in the design drawings) south of the channel that collects drainage from the steep northern slopes of South Mountain, as well as potential flood flows/runoff. Drainage flows pass through the basin and enter a 36-inch-diameter concrete pipe at a headwall near the intersection of the levee and road crossing of the channel with adjacent higher ground. This flow intersects with drainage flows from the agricultural property collected in a rectangular concrete cross-channel. Flow then passes through a series of rectangular concrete open channel segments and underground concrete pipes. The tops of the concrete channel segments are approximately at elevation 156¹ feet, the design top of the levee height. No documentation for the design of the drainage system was available for review. Figure 3 shows the general configuration of the cross-channel drainage system.

¹ Unless otherwise stated, all elevations used in this report refer to the National Geodetic Vertical Datum of 1929 (NGVD29).

Figure 3: Cross-Channel Drainage System at TBC Site (Photo from Google Earth, 2019)

Other Utilities

Previous as-built drawings (Ref. 8) show two 18-inch-diameter gas lines crossing perpendicular to and underneath the existing TBC crossing. Based on correspondences with United (Refs. 9 & 10; see Attachment C), Gannett Fleming understands that the gas transmission has been relocated to a 22inch-diameter pipeline that travels beneath the channel away from the existing TBC crossing. It is assumed that the 18-inch-diameter gas lines have been abandoned in place, but this will need to be verified by the contractor prior to construction.

An existing water line was also identified crossing perpendicular to the TBC. The water line will need to be verified by the contractor prior to construction and protected in place or relocated as appropriate.

DESIGN DESCRIPTION

Gannett Fleming is providing geotechnical, structural, and civil layout design services for the TBC and cross-channel pipeline. Any geotechnical or structural components that follow established design standards or guidelines (e.g., Caltrans standard plans, AWWA HDPE pipe design) will be confirmed to align with project needs and requirements. All other design services and design of other components (e.g., the steel gates) will be performed by others. Regrading of intersecting or approach roadways will be approved by United and conform with the grades on the design drawings (see Attachment A). Location, layout, and geometry of the new structures will generally match the existing structures to the extent practicable.

Vern Freeman Diversion Conveyance System: Three Barrel Culvert 90% Design Report August 14, 2023 6 GF Project No. 067376

The project will involve the replacement of the three existing 5-foot-diameter "barrel" culverts with two higher-capacity cast-in-place (CIP) reinforced concrete box (RCB) culverts—also referred to as a double-box CIP RCB culvert—with each box having 14-foot spans and 7-foot heights. The new RCB culverts will be approximately 76 feet long, with an inlet invert elevation of 144.10 feet, a downgrade slope of 0.0006%, and an outlet invert elevation of 144.05 feet. Both the inlet and outlet end of the new RCB culverts will comprise new CIP reinforced concrete headwalls and wingwalls, with the footings also serving as the new aprons for transitioning between channel and culvert inverts. Per USACE 1110-2-2902 (Ref. 13), both inlet and outlet headwalls will accommodate new stainless steel slide gate systems (e.g., gate, frame, stem, actuator) for each culvert span (four gates in total). Both transitions between existing channel and new aprons will comprise a section of concreted rock slope protection (RSP) to better conform to existing channel dimensions and to mitigate seepage and scour potential.

Designs and layouts, as well as material and construction specifications and appropriate design codes and standards, for the TBC replacement are depicted in the design drawings (see Attachment A).

Cross-Channel Flood/Drainage Ditch System

An existing cross-channel system runs perpendicularly above the TBC and comprises open concrete channel structures and a 36-inch-diameter concrete pipe system. The existing 36-inch-diameter concrete pipe will be removed and replaced with two 30-inch-diameter, approximately 110-foot-long HDPE (high density polyethylene) pipes to accommodate the new TBC sizes. The invert elevations of the new pipes will be slightly higher than the existing concrete pipe; however, the HDPE pipes will maintain a slope that complements the flow of the existing system. The cross-channel pipeline will include new CIP reinforced concrete inlet and outlet structures that will replace the two existing transition structures to the open concrete channel. Some channel and roadway regrading will be required to provide sufficient soil cover for the new pipe system.

An extension of the new HDPE pipe system will be included to connect the new inlet structure of the cross-channel system with an existing Ventura County flood/drainage ditch that runs adjacent to the Freeman system. This HDPE pipe system extension, comprising two 30-inch-diameter and approximately 20-foot-long pipes, will involve a new CIP reinforced concrete headwall at the flood/drainage ditch end.

DESIGN CRITERIA AND LOADS

The following design criteria focuses on the geotechnical, structural, and civil aspects of the TBC replacement. NHC's hydraulic design and modeling design criteria are also described below. Applicable design codes, guides, and manuals are provided in the Design Procedure section of this report.

Hydraulic Design

Because the TBC road crossing penetrates the levee, USACE guidance (Ref. 13) applies for design of all the conduits. The most significant design requirements from USACE standards include:

Precast reinforced concrete boxes are not permitted due to potential joint leakage. ٠

- Conduit backfill must be designed to prevent soil loss around the conduits with differential • water surfaces on the water and landsides of the levee.
- Gates must be provided for flood closure:
 - Gates are required for the upstream and downstream sides of the levee crossing.
 - o USACE closure requirements provide for one active and one passive gate for fast rising flood scenarios and allow two active gates for slow rising flood scenarios; in the project's case, passive gates are not feasible because channel flow is into the protected area rather than out of it (as is typically the case for interior drainage applications).

The hydraulic design criteria for the TBC replacement are summarized as follows:

- Design Flow = 750 cfs•
- Desired Velocity = similar to channel velocities to minimize entrance and exit losses
- Flow Control = two sets of gates to comply with USACE requirements for flood closure

United wishes to maximize capacity and minimize head loss at the crossing to accommodate the design flow and any physical or operational changes that may occur in the channel system in the future. Hydraulic design for replacement of the drainage system is intended to provide the same hydraulic capacity as the existing system. Several different pipe types are allowed by the USACE guidance (Ref. 13), with an emphasis on pipe design to prevent leakage and potential soil piping or loss due to seepage paths along the conduits.

Civil Design

Gannett Fleming's civil design and layout, including grading and work limits, are depicted in the design drawings in **Attachment A**. A maximum slope of 5% is determined for grading work along and adjacent to the road crossing over the TBC site to accommodate agricultural vehicle traffic, per discussions with NHC and United.

Geotechnical Design

For geotechnical and seismic design parameters, see Attachment B for Gannett Fleming's geotechnical evaluation (Ref. 7).

Structural Design

The following design criteria were used to guide the structural designs of the new culvert, headwalls, and wingwalls:

- Soil Unit Weight = 120 pcf
- Reinforced Concrete Unit Weight = 150 pcf
- Portable Reinforced Concrete Barrier = 900 pounds per linear foot (plf)
- Stainless Steel Slide Gate System = 10,000 pounds (maximum for one gate system) •
- Vehicle Vertical Surcharge = 250 psf •
- Load Factors per USACE EM 1110-2-2104, Table 3-1 (see Design Procedure section below for additional USACE engineering manual usage).

Vern Freeman Diversion Conveyance System: Three Barrel Culvert 90% Design Report August 14, 2023 GF Project No. 067376 8

DESIGN PROCEDURE

Cast-in-Place Reinforced Concrete Box Culverts

The new double box CIP RCB culverts to be used for the TBC crossing redesign are to follow the 2022 Caltrans Standard Plans and Specifications for a CIP RCB double box culvert, as referenced in the design drawings. To accommodate the slide gate systems, modifications to the inner and outer wall thicknesses of the double box culvert were made and are noted in the design drawings. Though these modifications differ from the Caltrans Standard Plans, the intent of the standard design is maintained. Per requirements of VCWPD, adherence of applicable design guidelines and engineering manuals (EMs) set forth by USACE, including EM 1110-2-2100, EM 1110-2-2104, and EM 1110-2-2902, have also been confirmed or accommodated for, such as with modifications to reinforcing steel to meet USACE minimum reinforcement requirements.

Reinforced Concrete Retaining Headwalls and Wingwalls

Due to existing and anticipated soil conditions, slide gate system installation, and channel layout, the new proposed CIP reinforced concrete headwalls and wingwalls are designed the same for both the inlet and outlet end of the culvert. These new walls are to serve as standard retaining walls and will be designed in accordance with guidelines and codes set forth by the 2019 California Building Code (CBC) and ACI 318-19 from the American Concrete Institute (ACI). Per requirements of VCWPD, the new retaining walls are also designed in accordance with applicable USACE EMs, including EM 1110-2-2100, EM 1110-2-2104, and EM 1110-2-2902. The reinforced concrete footings of the new headwalls and wingwalls are also serving as the new aprons for the inlet and outlet ends of the culvert; the top of footings align with the invert elevations of the culvert and channel.

External stability of the new headwalls and wingwalls is provided by additional reinforcing tieins/connections with the new culvert. The headwalls comprise a stepped thickness design, with the thicker section aligned with the culvert's height to provide sufficient thickness/depth for reinforcing tie-ins/connections and embedment for the slide gate system anchor bolts. The footings for the new headwalls span the invert and side slopes of the channel to form the apron that serves as a transition for flow between the open channel and culvert. The wingwalls are designed to tie into the sloped extensions of the headwall footings. A typical keyway is also included on each toe end of the new footings as a "cutoff wall" for supplementing the concreted RSP's mitigation of seepage and scour potential at the transitions between existing open channel and new apron.

The thinner, upper section of the headwalls above the top of culvert are designed as a retaining wall, accounting for previously mentioned loads and spanning across the full width of the culvert. The thicker, lower section of the headwalls is not intended as a retaining wall and is instead meant to serve as a stable connection point for the overall culvert system, tying together the culvert, wingwalls, footings/aprons, and slide gate systems. The slide gate system will be bolted along the vertical culvert walls, fully attached to the entire height of the headwalls whose external stability is also tied with the culvert, wingwalls, and footings. The new headwalls have been designed with assumed accommodations for common slide gate systems similar to that needed for this project. Actual fabrication, installation, and layout design of the systems will adhere to the selected manufacturer requirements and instructions. The contractor will provide submittals of the selected gate systems to undergo engineering review in accordance with the design drawings (see Attachment A).

The cantilevered stem wingwalls, by contrast, are designed as full retaining walls with shared footings with the headwalls.

Portable concrete barriers are included along roadway edges near the new headwalls and wingwalls to provide protection to the new structures, as well as guide vehicle traffic along the adjacent roadways. The portable barriers will still allow access to the slide gate systems, as needed.

Cross-Channel Flood/Drainage Ditch System

A new CIP reinforced concrete headwall has also been included in the modifications to the existing Ventura County flood/drainage ditch. The new headwall will connect to the new inlet structure of the existing cross-channel system via the new HDPE pipes. This new headwall will be constructed per the 2022 Caltrans Standard Plans and Specifications for a CIP headwall with a pipe connection. Previously mentioned USACE EM guidelines have been confirmed or accommodated for with adjustments in the construction drawings for this additional headwall design.

The new CIP reinforced concrete inlet and outlet structures of the cross-channel system are in mostly box-shaped layouts and are designed to retain the surrounding soil and possible traffic loads. Both cross-channel structures are externally stabilized as they are buried on all applicable sides, with each structure's walls sharing the same footing, as well as the new walls and footings tying into the existing cross-channel's walls and inverts, respectively. The cross-channel inlet structure has two of its walls requiring pipe penetration detailing, while the cross-channel outlet structure only has one of its walls requiring pipe penetration detailing. The cross-channel inlet structure will also require new concrete fill to be placed in the invert, extending beyond the structure into the existing cross-channel to attain an invert elevation of 152.7 feet to maintain the flow into the HDPE pipes.

High Density Polyethylene (HDPE) Pipe Systems

The new HDPE pipe size was selected based on the increased size of the new culvert and the need to maintain gravity flow from the inlet and outlet structures of the cross-channel system, including the extension from the flood/drainage ditch. Comprising two 30-inch-diameter, smooth-surfaced (interior and exterior) HDPE pipes, the new pipe system is designed per guidelines established by the M55 Manual by the American Water Works Association (AWWA). Using AWWA M55's "Design Window", the 30-inch-diameter HDPE pipe design follows standardized parameters and properties with a standard dimension ratio (SDR) of 17.0, as shown in the design drawings. Additional considerations and requirements outlined by USACE EM 1110-2-2902 for pipe systems are confirmed or accommodated for in the AWWA-based design.

Controlled Low Strength Material (CLSM) Backfill

Per USACE EM 1110-2-2902, controlled low strength material (CLSM) is to be used for structural backfill around the HDPE pipes, as outlined in the design drawings. CLSM will provide a more durable backfill that also acts as an internal seepage filter for the HDPE pipes. Additionally, due to the proposed project layouts, the use of CLSM allows for more efficient placement of the HDPE pipes over the culvert crossing, as it is difficult to perform proper compaction of soil backfill around the span of the culvert.

Hydraulic Design

Several design options were originally considered, including a simple bridge and a precast arch culvert. However, the levee penetration requirements make these options infeasible. A series of culvert sizes were tested in an updated HEC-RAS (RAS) model (Ref. 16) of the channel system. The RAS model was derived from the model used to assess the channel conveyance system capacity and make recommendations for improvements (Ref. 12), modified to include proposed improvements at the inverted siphon structure approximately 0.2 miles downstream of the TBC site, and construction of a proposed flow split structure and new canal segment bypassing the Grand Canal and Saticoy Ponds approximately 0.4 miles downstream. These improvements are necessary to achieve the desired 750-cfs future flow capacity and are thus consistent with design flows for the TBC site.

A double-box RCB culvert is a hydraulically efficient option for replacement of the three 60-inchdiameter pipes. Double-box RCB culvert sizes between 10 feet wide by 6 feet high and 14 feet wide by 8 feet high were simulated in the RAS model. A constraint on the vertical height of the RCB is the need to pass the HDPE drainage pipes over the top of the RCB culverts. Heights greater than 7 feet appear to be impractical for this reason.

The selected double-box RCB culvert size has a span of 14 feet wide by 7 feet high, with headwalls at the upstream and downstream ends. United requested that the existing length of the RCB crossing be maintained. The twin RCB structure will be slightly wider than the existing canal bed, requiring angled wingwalls to avoid slope grading that would encroach on existing roads. The closure gates will be fabricated stainless steel slide gates and will be installed on the headwalls. The gates will have manual operators, with provisions for portable electric operators to also be used. Based on coordination with potential gate manufacturers, the selected gate size is also the maximum that can practically be manufactured with the design operating head at the elevation of the adjacent road (elevation 156 feet). This elevation also approximately corresponds to the USACE design top of levee elevation.

RAS modeling results for various options are included in **Attachment D**. The computed design water levels and velocities for the selected option are shown in **Table 1**. Culvert hydraulic computations use entrance and exit loss coefficients of 0.5, and contraction and expansion loss coefficients of 0.3 and 0.5, respectively. Friction in the culverts is represented by a Manning's n-value of 0.02.

	Table 1. Hydraulic Characteristics of Double-box 14 x 7 KCB Culvert					
Flow	Upstream Water	Downstream Water	Culvert Velocity	Upstream		
(cfs)	Surface Elevation	Surface Elevation	(feet/second)	Channel Velocity		
	(feet)	(feet)		(feet/second)		
750	151.40	151.23	3.8	3.7		
500	149.89	149.94	3.1	3.5		
375	149.12	149.15	2.7	3.3		

Table 1. Hydraulic Characteristics of Double-Box 14' x 7' RCB Culvert

The conveyance of the proposed cross-channel drainage system replacement was designed to be equal to or greater than the existing concrete pipes using an n-value of 0.013 for existing concrete pipes and 0.011 for new HDPE pipes. The new drainage system will operate at a higher elevation to clear the proposed RCB culverts. Inlet and outlet losses will be reduced compared to the existing system by eliminating one segment of rectangular channel. The capacity of the two new HDPE pipes is estimated to be 39.4 cfs (flowing full). Computations for the cross-channel drainage system capacity are also included in Attachment D.

LIMITATIONS

This report has been prepared for only the replacement and redesign of the TBC facility described herein. Information related to the replacement of the inverted siphon facility associated with the Freeman Diversion Conveyance System is exclusive to this report's conclusions and recommendations.

This report has been prepared for the sole use of NHC, United, and their respective agents, specifically for design of the proposed improvements at the project site referenced on the cover of this report. The conclusions and recommendations contained in this report are based upon the information obtained from the references listed above. Gannett Fleming is not responsible for the data presented by others.

The information provided in this report is valid as of the date shown on the cover page for the designs described herein. Structural issues may arise that were not apparent at the time of this design (e.g., changes in design geometries, soil design parameters, loadings, etc.). Accordingly, the information provided in this report may be invalidated, wholly or partially, by changes outside of Gannett Fleming's control. Should changes occur that might affect the design presented herein, Gannett Fleming should be notified to evaluate the validity of this report to those changes.

(THIS PAGE INTENTIONALLY BLANK)

ATTACHMENT A – 90% DESIGN DRAWINGS

The reduced size (11" x 17") plans provided herein are intended as reference documents.

United Water UNITED WATER CONSERVATION DISTRICT

90% DESIGN DRAWINGS FOR THREE BARREL CULVERT REPLACMENT AT THE **VERN FREEMAN DIVERSION CONVEYANCE SYSTEM VENTURA COUNTY, CA**

NOT TO SCALE

NOT TO SCALE

FERENCE SCAL

SHEET INDEX

SHT NO.	<u>DWG</u> NO.	<u>TITLE</u>
	G1	TITLE SHEET
2	G2	NOTES
3	G3	ABBREVIATIONS
1	C1	DEMOLITION PLAN
5	C2	NEW CULVERT PLAN
5	C3	NEW CULVERT PROFILE & SECTIONS
7	S1	PARTIAL PLAN & SECTION
3	S2	SECTIONS
9	S3	DETAILS
0	S4	SECTIONS

REFERENCES

- LOWER RIVER SYSTEM, MAIN SUPPLY LINE, CULVERT, STA 40+80.40 TO STA 41+85.40, (AS-BUILT DWG, M-100-15), PREPARED BY UNITED WATER CONSERVATION DISTRICT, REV 2, DATED 3/19/1962.
- 2. TBC 30% DESIGN, EMAIL CORRESPONDENCE WITH "UNITED POTHOLE DRAWING 404 SEC 4A" HAND DRAWING FROM BRYCE CRUEY (NHC) TO JENNIFER ALLEN (GANNETT FLEMING), PREPARED BY NHC, DATED 9/25/2020.

PROJECT CONTACTS

OWNER UNITED WATER CONSERVATION DISTRICT CRAIG MORGAN PHONE: (805) 525-4431

HYRDRAULIC ENGINEER NORTHWEST HYDRAULIC CONSULTANTS, INC. ED WALLACE PHONE: (626) 440-0080

ENGINEER OF RECORD GANNETT FLEMING INC. JENNIFER S. ALLEN PHONE: (510) 768-0180

90% NOT FOR CONSTRUCTION

					2251 Douglas Blvd., Ste. 200	Roseville, CA 95661	(916) 677-4800	www.GANNETTFLEMING.com	
	DESCRIP TION								
	DATE								
	ВΥ								
	REV								
					THREE BARREL CULVERT	VERN FREEMAN DIVERSION CONVEYANCE SYSTEM			SANTA PAULA VENTURA COUNTY CALIFOR
	d	CEOISTF.	NS NS				T T		1
	DA1 SCA DES DRA CHE JOB FILE	E: IGNI FTE CKE NC	ED E ED B ED E 0.: (067:	3Y: Y: IY: 067 376	08/ AS P. I JS/ 376 001	14/2 SH /SN BAF A/TF	23 OW IU/V RBE RS	N VLM R	1
1		Sł	HEE	C)	I OF	10		

GENERAL NOTES

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 2. THE NOTES PROVIDED ON THESE DRAWINGS DO NOT REPRESENT A COMPLETE DESCRIPTION OF THE WORK TO BE PERFORMED AND ARE INTENDED TO COMPLEMENT THE SPECIFICATIONS AND PLANS. TECHNICAL SPECIFICATIONS AND PLANS ASSOCIATED WITH THIS WORK ARE AS FOLLOWS:
- A. CALTRANS 2022 STANDARD PLANS, OR MOST RECENT UPDATE:
- PLAN A62E: EXCAVATION AND BACKFILL CAST-IN-PLACE REINFORCED CONCRETE BOX AND ARCH CULVERTS
- PLANS A63A AND A63B: PORTABLE CONCRETE BARRIER (TYPE 60K)
- PLAN B0-3: BRIDGE DETAILS
- PLAN D81: CAST-IN-PLACE REINFORCED CONCRETE DOUBLE BOX CULVERT
- PLAN D89A: PIPE CULVERT HEADWALLS STRAIGHT AND "L"
- REVISED PLAN D82: CAST-IN-PLACE REINFORCED CONCRETE BOX CULVERT MISCELLANEOUS DETAILS
- B. CALTRANS 2022 STANDARD SPECIFICATIONS, OR MOST RECENT UPDATE:
- SECTION 19-3: STRUCTURE EXCAVATION AND BACKFILL
- SECTION 51: CONCRETE STRUCTURES
- SECTION 68-4: EDGE DRAINS
- SECTION 68-7: GEOCOMPOSITE DRAIN SYSTEMS
- SECTION 72-2: ROCK SLOPE PROTECTION
- SECTION 72-3: CONCRETED-ROCK SLOPE PROTECTION
- SECTION 83-1: GENERAL (FOR RAILINGS AND BARRIERS)
- SECTION 83-3: CONCRETE BARRIERS
- IN CASE OF CONFLICT BETWEEN THE CONSTRUCTION DOCUMENTS AND CALTRANS STANDARD SPECIFICATIONS AND PLANS, NOTIFY THE OWNER AND THE ENGINEER.
- 4. THE CONTRACTOR IS RESPONSIBLE FOR ALL CONSTRUCTION MEANS AND METHODS.
- 5. LOCATIONS AND DIMENSIONS OF EXISTING STRUCTURES AND FEATURES HAVE NOT BEEN VERIFIED. VERIFY ALL CONTROLLING DIMENSIONS OF NEW AND EXISTING FEATURES PRIOR TO ORDERING OR FABRICATING MATERIAL OR CONSTRUCTING PROPOSED IMPROVEMENTS. REPORT ANY DISCREPANCIES TO THE ENGINEER PRIOR TO PROCEEDING WITH CONSTRUCTION OF THE FEATURE IN QUESTION.
- . PRIOR TO THE START OF CONSTRUCTION, LOCATE ALL EXISTING AND UNDERGROUND UTILITIES IN AND AROUND THE AREAS OF NEW CONSTRUCTION. VERIFY THAT THE PROPOSED CONSTRUCTION DOES NOT CONFLICT WITH EXISTING OR PROPOSED UTILITIES OR THAT APPROPRIATE MEANS ARE PROVIDED FOR REROUTING. SUPPORTING, PROTECTING, OR OTHERWISE INCORPORATING THE UTILITIES INTO THE CONSTRUCTION.
- . NOTIFY THE OWNER AND ENGINEER WHERE A CONFLICT OR DISCREPANCY OCCURS BETWEEN THESE DRAWINGS AND ANY OTHER PORTION OF THE CONTRACT DOCUMENTS OR EXISTING FIELD CONDITIONS.
- 8. PRODUCTS REFERENCED IN THE DRAWINGS AND SPECIFICATIONS SHALL BE CONSTRUCTED, INSTALLED, AND APPLIED IN ACCORDANCE WITH THE MANUFACTURER'S WRITTEN RECOMMENDATIONS UNLESS OTHERWISE NOTED.
- 9. DO NOT SCALE DRAWINGS. CONTACT THE ENGINEER FOR ANY DIMENSIONS OF SPECIFIC DETAIL NOT SHOWN.
- THE CONTRACTOR SHALL MAINTAIN RECORDS SUITABLE FOR DEVELOPING "AS-BUILT" DRAWINGS THROUGHOUT THE COURSE OF CONSTRUCTION, INCLUDING, BUT NOT LIMITED TO, THE LOCATIONS AND GRADES OF ALL UNDERGROUND AND SURFACE IMPROVEMENTS. THESE RECORDS SHALL BE MARKED IN RED (INCLUDE), GREEN (REMOVE), BLUE (COMMENTS/DIRECTIONS) STANDARD FORMAT. THESE RECORDS SHALL BE DELIVERED TO THE OWNER PRIOR TO THE ACCEPTANCE OF WORK.

DESIGN BASIS AND LOADING

89

Ľ,

E S

PN 2

ö

- THE DESIGNS DEPICTED IN THESE DRAWINGS ARE BASED ON INFORMATION PROVIDED IN THE FOLLOWING REFERENCES:
- A. TOPOGRAPHIC BASE MAP, PROVIDED BY STANTEC, DATED JUNE 11, 2020. B. PRELIMINARY GEOTECHNICAL MEMORANDUM, PROVIDED BY GANNETT FLEMING,
- DATED SEPTEMBER 30, 2020. 2. DESIGN IS IN ACCORDANCE WITH THE FOLLOWING CODES AND STANDARDS:
- A. ACI 318-19, BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE
- B. 2019 CALIFORNIA BUILDING CODE

C. USACE ENGINEER MANUALS:

- EM 1110-2-2100: STABILITY ANALYSIS OF CONCRETE STRUCTURES, DATED 12/1/2005
- EM 1110-2-2104: STRENGTH DESIGN FOR REINFORCED CONCRETE HYDRAULIC STRUCTURES, DATED 11/30/2016.
- EM 1110-2-2902: CONDUITS, PIPES, AND CULVERTS ASSOCIATED WITH DAMS AND LEVEE SYSTEMS, DATED 12/31/2020.
- D. AWWA MANUAL M55, PE PIPE DESIGN AND INSTALLATION, FIRST EDITION
- E. CALTRANS 2022 STANDARD PLANS AND REVISED STANDARD PLANS
- 3. GEOTECHNICAL DESIGN PARAMETERS PER GEOTECHNICAL MEMORANDUM (SEE DESIGN BASIS AND LOADING NOTE 1B).
- DESIGN LOADS

FERENCE SCALE

- DEAD LOADS 150 PCF REINFORCED CONCRETE =
- PORTABLE CONCRETE BARRIER = 900 PLF STAINLESS STEEL SLIDE GATE SYSTEM = 10,000 POUNDS
- LIVE LOADS
- VEHICLE TRAFFIC SURCHARGE = 250 PSF • LATERAL EARTH PRESSURES :
 - SOIL UNIT WEIGHT = 120 PCF

- 5. SEISMIC DESIGN PARAMETERS:
 - SDS = 1.292q • PEAK GROUND ACCELERATION = 0.943g
 - SITE CLASS = D (STIFF SOIL)
 - RISK CATEGORY =
- 6. STRUCTURES HAVE BEEN DESIGNED FOR OPERATIONAL LOADS ON THE COMPLETED STRUCTURES ONLY. PROTECT AND STABILIZE STRUCTURES AS NECESSARY DURING CONSTRUCTION AND UNTIL DESIGN STRENGTHS ARE ACHIEVED.

SURVEY

- 1. HORIZONTAL COORDINATE SYSTEM: NAD83 CALIFORNIA STATE PLANE, ZONE 5.
- 2. VERTICAL DATUM: NGVD29
- 3. ALL UNITS SHOWN IN ARE IN U.S. SURVEY FEET.
- 4. CONTRACTOR TO PROVIDE FIELD SURVEYING FOR PROJECT LAYOUT AND CONTROL.
- 5. AERIAL PHOTOGRAPHS ARE FROM GOOGLE EARTH AND ARE SOLELY FOR ILLUSTRATIVE PURPOSES. IMAGERY REFERENCES PROVIDED ON RELEVANT SHEETS.

DEWATERING

- 1. THE CANAL SYSTEM IN THE PROJECT VICINITY WILL BE DEWATERED BY THE OWNER FOR THE DURATION OF THE WORK.
- 2. GROUNDWATER AND/OR SURFACE WATER MAY BE ENCOUNTERED DURING EXCAVATION AND SUBGRADE PREPARATION. THE CONTRACTOR IS RESPONSIBLE FOR DEWATERING AS NECESSARY TO MAINTAIN STABLE AND CLEAN EXCAVATIONS. DIRECT DISCHARGE OF AFOREMENTIONED GROUNDWATER/SURFACE WATER INTO STREAMBED IS NOT PERMISSIBLE. FINAL DISCHARGE POINTS FOR ALL DEWATERING SHALL BE APPROVED BY UNITED WATER CONSERVATION DISTRICT.
- 3. ALL PERMANENT IMPROVEMENTS SHALL BE CONSTRUCTED IN THE DRY.
- 4. CONTRACTOR SHALL PROVIDE A DEWATERING PLAN PRIOR TO CONSTRUCTION FOR REVIEW AND APPROVAL BY THE ENGINEER.

EXCAVATION

- 1. NOTIFY UNDERGROUND SERVICE ALERT (USA SOUTH) TO IDENTIFY THE LOCATION OF EXISTING UTILITIES AT LEAST TWO WORKING DAYS PRIOR TO ANY EXCAVATION WORK: (800)-422-4133 OR WWW.DIGALERT.ORG.
- LOCATIONS AND LAYOUTS OF EXISTING UTILITIES, BOTH ACTIVE AND ABANDONED, ARE BASED ON PROVIDED TOPOGRAPHY AND REFERENCES ON SHEET G1. FIELD VERIFICATION IS REQUIRED PRIOR TO PROJECT CONSTRUCTION.
- THE CONTRACTOR IS RESPONSIBLE FOR STABILITY AND SHORING OF TEMPORARY CUT SLOPES AND TRENCHES, AND SHALL CONFORM TO THE REQUIREMENTS OF CAL-OSHA.
- 4. EXCAVATIONS SHALL BE KEPT CLEAN AND DRY.

DEMOLITION

PROTECT EXISTING FEATURES THAT ARE TO REMAIN IN PLACE FROM DAMAGE UNLESS OTHERWISE NOTED.

FOUNDATION

- 1. CONTRACTOR SHALL BE PREPARED FOR POSSIBLE GRAVEL, COBBLES AND/OR ROCKFILL SUBGRADE CONDITIONS.
- 2. THE SUBGRADE SURFACE SHALL COMPRISE FIRM, NON-YIELDING MATERIALS. SHOULD OVER-EXCAVATION BE NEEDED TO REACH FIRM MATERIAL, BACKFILL SUBGRADE UP TO DESIGN GRADE

EARTHWORK

- 1. REFER TO CALTRANS 2022 STANDARD PLAN A62E FOR EARTHWORK RELATED TO THE CULVERTS. UNLESS OTHERWISE NOTED, ALL EARTHWORK SHALL ADHERE TO SECTION 19–3 OF THE CALTRANS 2022 STANDARD SPECIFICATIONS.
- 2. PREPARE DESIGNATED FILL AREAS BY GRUBBING AND STRIPPING VEGETATION, REMOVING DEBRIS, AND SCARIFYING TO A MINIMUM DEPTH OF 8 INCHES PRIOR TO MATERIAL PLACEMENT.
- 3. UNLESS OTHERWISE NOTED, COMPACT FILL MATERIAL IN 8-INCH LOOSE LIFTS AND COMPACT TO AT LEAST 95% RELATIVE COMPACTION (RC) AT A MOISTURE CONTENT AT LEAST 2% OVER OPTIMUM PER ASTM D1557 AND D6938.
- 4. ONSITE FILL MATERIAL SHALL BE FREE OF ORGANIC MATERIAL (LESS THAN 3% BY VOLUME) AND SHOULD NOT CONTAIN ANY PARTICLES GREATER THAN 3" IN DIAMETER.
- 5. IMPORTED FILL MATERIAL SHALL BE FREE OF ORGANICS (LESS THAN 3% BY VOLUME), DEBRIS. HAVE AT LEAST 20% FINES AND NO PARTICLES GREATER THAN 3" IN DIAMETER PER ASTM D6913, AND HAVE A PLASTICITY INDEX OF 12 OR LESS PER ASTM D4318.
- 6. PERFORM GRADING TO THE LINES AND GRADES SHOWN. FINISHED SURFACES SHALL PROVIDE POSITIVE SURFACE DRAINAGE TO PREVENT PONDING. 7. SEE HDPE PIPE NOTES, THIS SHEET.
- TEMPORARY ENVIRONMENTAL/EROSION CONTROL
- 1. CONTAIN SURFACE RUNOFF AND CEMENTITIOUS MATERIAL DURING CONSTRUCTION TO PREVENT CONTAMINATION OF GROUND AND SURFACE WATERS.
- 2. MAINTAIN THE SITE AND ADJACENT PROPERTY IN A CLEAN, SAFE, AND USABLE CONDITION. ALL SPOILS OF SOIL, ROCK, OR CONSTRUCTION DEBRIS SHALL BE PROMPTLY REMOVED.
- 3. IMPLEMENT EROSION AND SEDIMENT CONTROL PLANS AND BEST MANAGEMENT PRACTICES AS REQUIRED BY LOCAL AND STATE JURISDICTIONS.

DRAINAGE

- 1. WEEP HOLES, OR DRAINAGE PIPES, SHALL BE PER BRIDGE DETAIL 3-1 OF PLAN BO-3 OF THE CALTRANS 2022 STANDARD PLANS, OAE.
- 2. DRAINAGE PIPES AND FILTER FABRIC SHALL COMPLY WITH SECTION 68-7 OF THE CALTRANS 2022 STANDARD SPECIFICATIONS. DRAINAGE PIPES SHALL ALSO COMPLY WITH SECTION 68-4.02B OF THE CALTRANS 2022 STANDARD SPECIFICATIONS.
- PERVIOUS BACKFILL MATERIAL SHALL COMPLY WITH SECTION 19-3.02D OF THE CALTRANS 2022 STANDARD SPECIFICATIONS FOR GRAVEL OR CRUSHED GRAVEL.
- 4. TERMINATE PERVIOUS BACKFILL BEHIND WINGWALLS WHEN 3'-0" DEPTH IS UNABLE TO BE MET PER BRIDGE DETAIL 3-1 OF PLAN B0-3 OF THE CALTRANS 2022

4.5% MIN (SEE ACI AIR ENTRAINMENT = 318-19 TABLE 19.3.3.1 FOR SMALLER AGGREGATE SIZE REQUIREMENTS) ASTM C150 TYPE I CEMENT = EXPOSURE CLASSES: FREEZING AND THAWING = FO SULFATE = SO PERMEABILITY = W2 CORROSION = C1 FORMS SHALL BE PROVIDED TO ACHIEVE LINES, GRADES, AND GEOMETRY OF CONCRETE STRUCTURES AS INDICATED ON THESE DRAWINGS. 4. EXPOSED CONCRETE EDGES SHALL HAVE A 3/4" CHAMFER 5. CONCRETE SURFACES SHALL BE CLASS 1 SURFACE FINISH FOR ALL HEADWALLS AND WINGWALLS PER CALTRANS 2022 STANDARD SPECIFICATION SECTION 51-1.03F(3). 6. REINFORCING STEEL • DEFORMED REBAR = ASTM A615, GRADE 60 (fy = 60 KSI)

0.45 (±.03)

7. REINFORCEMENT SPACING SHOWN IS CENTER TO CENTER OF BARS. REINFORCEMENT FOR CULVERTS AND DRAINAGE/FLOOD DITCH HEADWALL NOT SHOWN FOR CLARITY IN SECTIONS AND DETAILS.

1. UNLESS OTHERWISE NOTED, ALL CONCRETE STRUCTURES SHALL BE CAST-IN-PLACE.

MINIMUM 28-DAY COMPRESSIVE STRENGTH (f'c) = 4,500 PSI

- 8. UNLESS OTHERWISE NOTED, MAINTAIN 3" OF COVERAGE TO THE FACE OF REBAR
- 9. MINIMUM LAP LENGTHS SHALL CONFORM TO TABLE 1, THIS SHEET
- 10. STEEL SHALL BE KEPT CLEAN AND FREE OF RUST SCALES
- 11. REINFORCING BARS SHALL BE PLACED IN LENGTHS AS LONG AS POSSIBLE. ALL REINFORCING STEEL SHALL BE COLD BENT.
- 12. REINFORCING AND INSERTS SHALL BE RIGIDLY HELD IN PLACE PRIOR TO CONCRETE PLACEMENT.
- 13. INSPECTION AND TESTING REQUIREMENTS FOR FIRST BATCH PRODUCED EACH DAY SHALL MEET THE FOLLOWING:
 - TEMPERATURE PER ASTM C172
 - AIR CONTENT PER ASTM C231
 - SLUMP PER ASTM C143

SPECIFICATIONS FOR CLASS III ROCK.

MINIMUM RSP LAYER THICKNESS = 2'-0".

CONSERVATION DISTRICT.

M55 CHAPTER 5.

OF USACE EM 1110-2-2902.

RECOMMENDATIONS

RECOMMENDATIONS.

8. MINIMUM SOIL COVER OVER PIPE = 3 FEET

HDPE PIPE

ROCK SLOPE PROTECTION

CONCRETE

2. CONCRETE STRENGTH AND MIX REQUIREMENTS:

• WATER/CEMENT RATIO =

MAXIMUM AGGREGATE SIZE =

• CONCRETE COMPRESSIVE STRENGTH PER CALIFORNIA TEST 529 & 533 FOR FIVE TEST CYLINDERS PER EVERY 300 CUBIC YARDS (1 AT 7 DAYS, 1 AT 14 DAYS, 2 AT 28 DAYS, AND ONE HOLD)

RSP SHALL BE CONCRETED AND COMPLY WITH THE ROCK GRADING AND FABRIC REQUIREMENTS SHOWN IN SECTION 72-3.02C OF THE CALTRANS 2022 STANDARD

RSP SHALL CONFORM TO THE REQUIREMENTS OF CALTRANS METHOD B PLACEMENT PER SECTION 72-3.03C OF THE CALTRANS 2022 STANDARD SPECIFICATIONS.

4. RSP SHALL BE TESTED AND IN ACCORDANCE WITH SECTION 72-3 OF THE 2022

5. ROCK SHALL BE ANGULAR. ROUNDED ROCK AND COBBLES ARE NOT ACCEPTABLE.

8. THE AREA COVERED WITH RSP SHALL BE CLEARED OF LOOSE SOIL AND DEBRIS. ALL EXCESS EXCAVATED MATERIAL SHALL BE DISPOSED OF IN UNITED WATER

PIPE MATERIAL = SOLID HIGH DENSITY POLYETHYLENE (HDPE) PIPE, SDR 17, WITH SMOOTH INTERIOR AND EXTERIOR SURFACES.

PIPE SHALL BE PRODUCED PER AWWA M55 CHAPTER 1, IN ACCORDANCE WITH ANSI/AWWA C906, MEETING REQUIREMENTS IN ASTM D3350.

4. PIPE SHALL BE INSTALLED PER AWWA M55 CHAPTER 8, IN ACCORDANCE WITH ANSI/AWWA C906, MEETING REQUIREMENTS IN ASTM D2321. IN ADDITION TO ASTM

D2321, OVERSIGHT OF PIPE INSTALLATION SHALL ADHERE TO SECTIONS 5.8 AND 5.9

ACCORDANCE WITH ANSI/AWWA C906, MEETING REQUIREMENTS IN ASTM F2620 (ASTM

5. PIPE SIZING SHALL CONFORM TO AWWA M55 CHAPTER 3. TABLE 3-1, FOR A 30" OD.

INSTALL PIPE TO THE LINES AND GRADES SHOWN ON CIVIL SHEETS. COLD BEND THE PIPE WHERE NECESSARY:

9. CONNECTION OF PIPE AND CONC HEADWALLS SHALL COMPRISE A RUBBER MANHOLE STOP RING, MANUFACTURED BY NORTHTOWN PIPE PROTECTION PRODUCTS, OAE, AND

10. CULVERT INSTALLATION MUST BE COMPLETED PRIOR TO HDPE PIPE INSTALLATION. CULVERT INSTALLATION SHALL FOLLOW CALTRANS STANDARD PLAN A62E. HDPE PIPE INSTALLATION SHALL FOLLOW THE TRENCHING METHOD PER AWWA M55 CHAPTER 8.

SHALL MEET REQUIREMENTS IN ASTM C923. INSTALL PER MANUFACTURER'S

6. PIPE SEGMENTS SHALL BE BUTT FUSION WELDED PER AWWA M55 CHAPTER 6, IN

• MINIMUM BEND RADIUS = 67.5 FEET, OR PER MANUFACTURER

2. HDPE PIPE SHALL BE DESIGNED, MANUFACTURED, AND INSTALLED PER GUIDELINES IN AWWA M55. PIPE SHALL BE IN ACCORDANCE WITH THE DESIGN WINDOW OF AWWA

CONSERVATION DISTRICT'S DESIGNATED AREAS NEAR THE SITE OR OFF-HAULED TO AN ACCEPTABLE WASTE DISPOSAL FACILITY AS DETERMINED BY UNITED WATER

CALTRANS STANDARD SPECIFICATIONS FOR CLASS III ROCK.

6. CONCRETE SHALL HAVE A SLUMP OF 3 TO 4 INCHES

D2657 SPECIFIES ASTM F2620 FOR HDPE PIPES).

3. ROCK AND CONCRETE MATERIAL MUST MEET THE REQUIREMENTS IN SECTION 72-3.02 OF THE CALTRANS 2022 STANDARD SPECIFICATIONS FOR CLASS III ROCK.

 CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USAGE EM 1110–2–2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HOPE PIPES, PER AWAM MS SCHAPTER 8, PRIOR TO FINAL BACKFILL CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USAGE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HOPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL MOYOR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM ALL QUALITY CONTROL. TESTING LABORATORY TO PERFORM ALL QUALITY CONTROL. TESTING LABORATORY TO PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM AND/OR RETAIN THE SERVICES OF THE PROPOSED WORK. CONTRACTOR SHALL PERFORM ON PROJECTI DOCUMENTS. SITE LAYOUT COMPLETION OF EXCAVATION/APPROVAL OF FOUNDATION (ENGINEER HOLD POINT) PLACEMENT OF FORM WORK PLACEMENT OF FORM WORK PLACEMENT OF FORM WORK PLACEMENT OF SUDE GATE INSTALLATION OF HDPE PIPES PLACEMENT OF SHALL DEAD OF FILL MATERIALS (ENGINEER HOLD POINT) NOIFY THE INSPECTOR/ENGINEER AT LEAST 48 HOURS BEFORE INSPECTION OR OBSERVATION IS NEEDED. CONTRACTOR SHALL SUBMIT PROPOSED MATERIALS AND PRODUCTS CALLED FOR IN THE PLANS FOR REVEW MAND APPROVAL OF FILE MARKER: DEWATERINO PLAN, CLSM, HDP	CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HDPE PIPES, AS FOLLOWS: • CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. • CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA MS5 CHAPTER 8, PRIOR TO FINAL BACKFILL CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINCIUNE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. • THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. • THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION: AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK, CONTRACTOR SHALL PRRYOM AND/OR RELATED TO THE PROPOSED TO VERIFY COMPLIANCE TO THE PROJECT DOCUMENTS. CONSTRUCTION OBSERVATION BY THE INSPECTOR, APPROVED BY THE OWNER, IS REQUIRED AT THE FERUPATION ALL DESET TO THE PROPOSED TO VERIFY COMPLIANCE TO THE PROJECT DOCUMENTS. • STIEL LAYOUT • COMPLETION OF ENFORCING STEEL (ENGINEER HOLD POINT) • PLACEMENT OF FORM WORK • PLACEMENT OF CONCRETE • PLACEMENT OF CONCRETE • PLACEMENT OF CONCRETE • PLACEMENT OF CONCRETE • PLACEMENT OF SUIDE GATE • INSTALLATION OF HDPE PIPES • PLACEMENT OF SUIDE GATE • PLACEMENT OF SUIDE GATE AND PROPOSED MATERIALS (ENGINEER HOLD POINT) NOTHY THE INSPECTOR/CONING STALES AD DREDUCTS CALLED FOR IN HDPE PIPES, SUDE GATE ANCHOR BOLTS, ETC.
 CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5-2, OF USACE EM 1110-2-2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HOPE PIES, PER AWWA MS5 CHAPTER 8, PRIOR TO FINAL BACKFILL CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110-2-2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HOPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK, CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK, CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK, CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK, OLL THE CERTIFIED TESTS BY THE TESTING LABORATORY CAN BE USED TO VERIFIED TESTS BY THE TESTING LABORATORY CAN BE USED TO VERIFIED TESTS BY THE TESTING LABORATORY CAN BE USED TO VERIFIED TESTS BY THE TESTING LABORATORY CAN PERVENCE OF THE PROPOSED WORK, ONL THE CERTIFIED TESTS ONTRACTION OSERVATION BY THE INSPECTOR, APPROVED BY THE OWNER, IS REQUIRED AT THE FOLLOWING STAGES OF CONSTRUCTION: SITE LAYOUT COMPLETION OF EXCAVATION/APPROVAL OF FOUNDATION (ENGINEER HOLD POINT) PLACEMENT OF FORM WORK PLACEMENT OF CONCRETE NETALLATION OF HIDE SHESS BEFORE INSPECTOR, REMISER AT LEAST 48 HOURS BEFORE INSPECTION OR OBSERVATION IS NEEDED. COMPLETION OF FILL MATERIALS AND PRODUCTS CALLED FOR IN THE PLANS REGIMERER AT LEAST 48 HOURS BEFORE INSPECTION OR OBSERVATION IS NEEDED. COMTRACTOR SHALL SUBMIT PROPOSED MATERIALS AND PRODUCTS CALLED FOR	CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HDPE PIPES, AS FOLLOWS: CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLSM SHALL BE PLACEMENT AND MOM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAS, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. • THE ROOL OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PERFORM AND/OR RELATION LESSTROTY CAN BE USED TO VERIFIED TESTING BY THE TESTING LABORATORY CAN BE USED TO VERIFY COMPLIANCE TO THE PROJECT DOCUMENTS. CONSTRUCTION OBSERVATION BY THE INSPECTOR, APPROVED BY THE OWNER, IS REQUIRED AT THE FOLLOWING STAGES OF CONSTRUCTION: • SITE LAYOUT • COMPLETION OF EXCAVATION/APPROVAL OF FOUNDATION (ENGINEER HOLD POINT) • PLACEMENT OF FORM WORK • PLACEMENT OF SIDE GATE • INSTALLATION OF HENDER SHEL (ENGINEER HOLD POINT) NOTFY THE INSPECTOR/RENGER AT LEAST 48 HOURS BEFORE INSPECTION OR BESERVATION IS NEEDED. CONTRACTOR SHALL SUBMIT PROPOSED MATERIALS AND PRODUCTS CALLED FOR IN THE PLANS COMPLETED. OF THE ENGINEER DEAKFIL, PERVIOUS BACKFILL, CLSM, HDPE PIPES, SLIDE GATE ANCHOR BOLTS, ETC.
 CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2900, CAS, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTON RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM AND/OR RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PERFORM AND/OR RELATED TO FORM WORK PLACEMENT OF RUBPCRICING STEEL (ENGINEER HOLD POINT) NOTIFY THE INSPECTOR /ENGINESTER AT LEAST 4B HOURS BEFORE INSPECTION OR	CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HOPE PIPES, AS FOLLOWS: CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HOPE PIPES, PER AWWA MS5 CHAPTER 8, PRIOR TO FINAL BACKFILL CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAS, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE ROOF OF THE CULVERT MUST BE CAST AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION ALADO DESERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL. TESTS OF THE PROPOSED WORK. CONTRACTOR TO PERFORM ALL QUALITY CONTROL, TESTS OF THE PROPOSED WORK. CONTRACTOR TO PERFORM ALL QUALITY CONTROL, TESTS OF THE PROPOSED WORK. CONTRACTOR TO PERFORM ALL QUALITY CONTROL, TESTS OF THE PROPOSED WORK. CONTRACTOR TO PERFORM ALL QUALITY CONTROL, TESTS OF THE PROPOSED WORK. CONTRACTOR TO PERFORM ALL QUALITY CONTROL, THE INSPECTOR, APPROVED BY THE OWNER, IS CONSTRUCTION OBSERVATION BY THE INSPECTOR, APPROVED BY THE OWNER, IS CONSTRUCTION OF EXCAVATION /APPROVAL OF FOUNDATION (ENGINEER HOLD POINT) PLACEMENT OF CONCRETE PLACEMENT OF ORDER AT LEAST 48 HOURS BEFORE INSPECTION OR CONTRACTOR SHALL SUBMIT PROPOSED MATERIALS AND PRODUCTS CALLED FOR IN PEP PIPES, SLIDE GATE AND APPROVAL OF THE ENGRERENC PLAN, CONCRETE, RENFORCING STEEL (SHATCH AND PROVINCE MACHINER: DEWINTENCE PLAN, CONC
 CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORWWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HOPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFICE DISTING LABORATORY TO PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFICE DISTING LABORATORY TO PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFICE DISTING LABORATORY TO PERFORM AND/OR RETING LABORATORY CAN BE USED TO VERIFY COMPLIANCE TO THE PROJECT DOCUMENTS. CONSTRUCTION OBSERVATION BY THE INSPECTOR, APPROVED BY THE OWNER, IS REQUIRED AT THE FOLLOWING STAGES OF CONSTRUCTION: SITE LAYOUT COMPLETION OF FERORM WORK PLACEMENT OF FORM WORK PLACEMENT OF FORM WORK PLACEMENT OF FORM WORK PLACEMENT OF SUDE GATE INSTALLATION OF HDPE PIPES PLACEMENT OF CONCRETE PLACEMENT OF CONCRETE PLACEMENT OF CONCRETE PLACEMENT AND COMPACTION OF FILL MATERIALS (ENGINEER HOLD POINT) NOTHEY THE INSPECTOR/ENGINEER AT LEAST 48 HOURS BEFORE INSPECTION OR OBSERVATION IS NEEDED. 	CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HDPE PIPES, AS FOLLOWS: • CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5-2, OF USACE EM 1110–2-2902. • CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORWWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. • THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE PROPOSED WORK. CONTRACTOR SHALL PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM AND/OR RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PERFORM AND/OR RELATED TO TO FERFORES OF CONSTRUCTION: • SITE LAYOUT • COMPLETION OF SKALES OF CONSTRUCTION: • SITE LAYOUT • PLACEMENT OF FORM WORK • PLACEMENT OF FORM WORK • PLACEMENT OF FORM WORK • PLACEMENT OF REINFORCING STEEL (ENGINEER HOLD POINT) • PLACEMENT OF RUP OR SUDE GATE • INSTALLATION OF HDPE PIPES • PLACEMENT OF CONCRETE • PLACEMENT OF CONCRETE • PLACEMENT OF CONCRETE AT LEAST 48 HOURS BEFORE INSPECTION OR BESERVATION IS NEEDED.
 CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5-2, OF USACE EM 1110-2-2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110-2-2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION OF THE PROPOSED WORK. CONTRACTOR SHALL PERFORM AND/OR RELATED TO THE PROPOSED WORK. CONTRACTOR TO PIPE INSTALLATION. SPECTION OBSERVATION BU USED TO VERIFY COMPLIANCE TO THE PROJECT DOCUMITS. SITE LAYOUT COMPLETION OF EXCAVATION/APPROVAL OF FOUNDATION (ENGINEER HOLD POINT) PLACEMENT OF FORM WORK PLACEMENT OF REINFORM STAGES OF ACENTRUCTION: SITE LAYOUT COMPLETION OF SERVATION BY THE INSPECTOR, APPROVED BY THE OWNER, IS REQUIRED AT THE FOLLOWING STAGES OF CONSTRUCTION: SITE LAYOUT PLACEMENT OF FORM WORK PLACEMENT OF FORM WORK PLACEMENT OF FORM WORK PLACEMENT OF CONCRETE PLACEMENT OF SLIDE GATE 	CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HDPE PIPES, AS FOLLOWS: • CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USAGE EM 1110–2–2902. • CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USAGE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. • THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK. CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK. CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK. CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK. CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK. CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK. CONTRICTION: • SITE LAYOUT • COMPLETION OF EXCAVATION/APPROVAL OF FOUNDATION (ENGINEER HOLD POINT) • PLACEMENT OF FORM WORK • PLACEMENT OF FORM WORK • PLACEMENT OF FORM WORK • PLACEMENT OF FORM WORK • PLACEMENT OF SUDE GATE • PLACEMENT OF SUDE GATE
 CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK. ONLY THE CERTIFIED TESTS BY THE TESTING LABORATORY CAN BE USED TO VERIFY COMPLIANCE TO THE PROJECT DO RESERVATION BY THE INSPECTOR, APPROVED BY THE OWNER, IS REQUIRED AT THE FOLLOWING STAGES OF CONSTRUCTION: SITE LAYOUT COMPLETION OF EXCAVATION/APPROVAL OF FOUNDATION (ENGINEER HOLD POINT) PLACEMENT OF FORM WORK PLACEMENT OF FORM WORK PLACEMENT OF REINFORCING STEEL (ENGINEER HOLD POINT) 	CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HDPE PIPES, AS FOLLOWS: CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5-2, OF USACE EM 1110–2-2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2-2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PREVINES ADJ/OR RELATED TO THE PROPOSED WORK. ONLY THE CERTIFIED TESTS BY THE TESTING LABORATORY CAN BE USED TO VERIFY COMPLIANCE TO THE PROJECT DOCUMENTS. CONSTRUCTION OF SEXAVATION/APPROVAL OF FOUNDATION (ENGINEER HOLD POINT) SITE LAYOUT COMPLETION OF EXCAVATION/APPROVAL OF FOUNDATION (ENGINEER HOLD POINT) PLACEMENT OF FORM WORK PLACEMENT OF REINFORCING STEEL (ENGINEER HOLD POINT)
 CLISM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. CLISM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK. ONLY THE CERTIFIED TESTS BY THE TESTING LABORATORY CAN BE USED TO VERIFY COMPLIANCE TO THE PROJECT DOCUMENTS. CONSTRUCTION OBSERVATION BY THE INSPECTOR, APPROVED BY THE OWNER, IS REQUIRED AT THE FOLLOWING STAGES OF CONSTRUCTION: SITE LAYOUT COMPLETION OF EXCAVATION/APPROVAL OF FOUNDATION (ENGINEER HOLD POINT) PLACEMENT OF FORM WORK 	 CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HDPE PIPES, AS FOLLOWS: CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION BY THE INSPECTOR, APPROVED BY THE OWNER, IS REQUIRED AT THE FOUNDATION BY THE INSPECTOR, APPROVED BY THE OWNER, IS REQUIRED AT THE FOLLOWING STAGES OF CONSTRUCTION: SITE LAYOUT COMPLETION OF EXCAVATION/APPROVAL OF FOUNDATION (ENGINEER HOLD POINT) PLACEMENT OF FORM WORK
 CLISM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. CLISM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLISM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PERFORM AND/OR RELATED TO THE PROPOSED WORK. CONTRICT TO PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TO VERIFY COMPLIANCE TO THE PROJECT DOCUMENTS. CONSTRUCTION OBSERVATION BY THE INSPECTOR, APPROVED BY THE OWNER, IS REQUIRED AT THE FOLLOWING STAGES OF CONSTRUCTION: SITE LAYOUT 	CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HDPE PIPES, AS FOLLOWS: CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK. ONLY THE CERTIFIED TESTS BY THE TESTING LABORATORY CAN BE USED TO VERIFY COMPLIANCE TO THE PROJECT DOCUMENTS. CONSTRUCTION OBSERVATION BY THE INSPECTOR, APPROVED BY THE OWNER, IS REQUIRED AT THE FOLLOWING STAGES OF CONSTRUCTION: • SITE LAYOUT
 CLISM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. CLISM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLISM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAE, SHALL BE USED DURING CLISM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLISM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK. CONTRACTOR SHALL PERFORM AND/OR RETAIN THE SERVICES OF A CERTIFIED TESTING LABORATORY TO PERFORM ALL QUALITY CONTROL TESTS OF THE PROPOSED WORK. ONLY THE CERTIFIED TESTIS BY THE TESTING LABORATORY CAN BE USED TO VERIFY COMPLIANCE TO THE PROJECT DOCUMENTS. 	CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HDPE PIPES, AS FOLLOWS: • CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. • CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. • THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. SPECTION AND OBSERVATION CONTRACTOR SHALL PROVIDE QUALITY CONTROL, MATERIALS TESTING AND SPECIAL INSPECTION RELATED TO THE PROPOSED WORK. ONLY THE CERTIFIED TESTS BY THE TESTING LABORATORY CAN BE USED TO VERIFY COMPLIANCE TO THE PROJECT DOCUMENTS.
 CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION. 	CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HDPE PIPES, AS FOLLOWS: CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5–2, OF USACE EM 1110–2–2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110–2–2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN BE COMPLETED. THE ROOF OF THE CULVERT MUST BE CAST AND FULLY CURED TO SERVE AS THE FOUNDATION OF THE HDPE PIPES AND CLSM BACKFILL PRIOR TO PIPE INSTALLATION.
 CLISM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5-2, OF USACE EM 1110-2-2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110-2-2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN 	CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HDPE PIPES, AS FOLLOWS: CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5-2, OF USACE EM 1110-2-2902. CLSM SHALL BE USED FOR BEDDING AND INITIAL BACKFILL AROUND THE HDPE PIPES, PER AWWA M55 CHAPTER 8, PRIOR TO FINAL BACKFILL. CLSM SHALL BE PLACED A MINIMUM OF 12 INCHES ABOVE THE PIPE CROWN AND TO THE SIDES OF THE PIPE SPRINGLINE. TEMPORARY FORMWORK OR A WEIGHTED ANCHOR SYSTEM, PER SECTION 5.5.18.1 OF USACE EM 1110-2-2902, OAE, SHALL BE USED DURING CLSM BACKFILL AROUND THE PIPES TO PREVENT FLOTATION AND UNTIL BACKFILL ABOVE THE CULVERT CAN
CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE S=2 OF USACE FM 1110-2-2902	CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HDPE PIPES, AS FOLLOWS: • CLSM PROPERTIES SHALL ADHERE TO SECTION 5.5.18.1, INCLUDING TABLE 5-2, OF USAGE FM 1110-2-2902
	CLSM SHALL BE USED AS STRUCTURAL BACKFILL AROUND THE HDPE PIPES, AS

	TOP BARS ^B		OTHEF	STD HOOKS (90° OR 180°)	
SIZE	E DEV LENGTH Ld CLASS B LAP SPLICE (IN)		LENGTH Ld CLASS B LAP SPLICE (IN) (IN)		DEV LENGTH Ldh (IN)
4	24	31	15	24	6
5	30 38		18	30	8
5	35 46		22	35	10
7	51	67	40	51	11
3	59	76	45	59	13
9	66	86	51	66	15

TABLE 1 - TYPICAL DEVELOPMENT/LAP LENGTHS A

FOOTNOTES:

RAR

11. CLSM

INSPEC

1. CONTR

2. CONST

3. NOTIF

4. CONTR THE P

A. BASED ON ACI 318-19 SECTIONS 25.4.2 - 25.4.3, WITH f'c = 4,500 PSI AND fy = 60,000 PSI, STD HOOK DIAMETERS AND EXTENSIONS FOLLOW STD DETAILS FROM CONCRETE REINFORCING STEEL INSTITUTE (CRSI).

B. TOP BARS SHALL BE DEFINED AS ANY HORIZONTAL BAR PLACED SUCH THAT MORE THAN 12 INCHES OF FRESH CONCRETE IS CAST IN THE MEMBER BELOW THE BAR IN ANY SINGLE POUR. HORIZONTAL WALL BARS ARE CONSIDERED TOP BARS.

90% NOT FOR CONSTRUCTION

REFERENCE SCALE

90% NOT FOR CONSTRUCTION

LEGEND & ABBREVIATIONS

(E)	3500	MAJOR CON
(E)		MINOR CONT
(N)	<u> </u>	MAJOR CON
(N)		MINOR CONT
APPROX		APPROXIMA
BOF		BOTTOM OF
BOM		BOLLOW OF
CIF		CONSTRUCT
E.		CENTER LIN
CLR		CLEAR
CLSM		CONTROLLED
CONC		CONCRETE,
D/S		DOWNSTREA
DIA, Ø		DIAMETER O
(F)		EXISTING FE
EF		EACH FACE
EG		EXISTING GR
ELEC		ELECTRIC
ELEV		ELEVATION
FG		FINISH GRAL
FIG		
G		GAS LINE
GM		GAS METER
GV		GAS VALVE
HORIZ		HORIZONTAL
ID		INSIDE DIAM
IF		LINEAR FEE
MAX		MAXIMUM
MIN		MINIMUM
(N)		NEW FEATUR
OAE		OR APPROV
00		ON CENTER
OHW		OVERHEAD 1
PIP		PROTECT-IN
RC		RELATIVE CO
RCB		REINFORCED
REINF		REINFORCEM
RSP		RUCK SLUPI
SCH		SCHEDULE
SDR		STANDARD I
SPEC		SPECIFICATION
SS		STAINLESS S
STD		STANDARD
TOF		
том		TOP OF WAI
TYP		TYPICAL
U/S		UPSTREAM
W		WATER LINE
WV		WATER VAL
\equiv		FLOW PATH
\triangle		CONTROL PO
\otimes		COORDINATE
~		
$^{\prime}/\overline{\lambda}$		DEMOLITION
269		
$\left(\begin{array}{c} A \\ 272 \end{array}\right)$	SECTION C	R DETAIL
New York	IDENTIFICA	TION
\backslash		F DRAWING WH
	SECTION IS	S SHOWN

CONTOUR CONTOUR CONTOUR CONTOUR DXIMATE DM OF FOOTING DM OF WALL -IN-PLACE TRUCTION JOINT LINE COLLED LOW STRENGTH MATERIAL ETE, CONCRETED STREAM TER OR PIPE DIAMETER ISH NG NG FEATURE FACE NG GRADE SIC TION GRADE G VERIFY INE ETER /ALVE ONTAL DIAMETER T ELEVATION FEET UM М EATURE PROVED EQUIVALENT ITER E DIAMETER EAD WIRES CT-IN-PLACE VE COMPACTION RCED CONCRETE BOX RCEMENT SLOPE PROTECTION DULE DARD DIMENSION RATIO FICATION LESS STEEL DARD DF FOOTING WALL EAM LINE VALVE PATH OL POINT NATE POINT

WHERE

_NUMBER OF DRAWING WHERE SECTION IS CUT

SHEET 3 OF 10

FERENCE SCAL

IMAGERY: © 2023 AIRBUS, MAXAR TECHNOLOGIES, U.S. GEOLOGICAL SURVEY

SCALE: 1" = 10'

– ഗ GANNET N: 1927317.53 E: 6222461.11 $\overline{\mathbf{O}}$ 2251 APPROX EDGE OF DIRT ROAD TO REMAIN (N) CONC RSP, TYP CONTOUR RSP TO SMOOTHLY TRANSITION FROM (E) CHANNEL SHAPE TO (N) APRON (N) APRON ELEV 145.50' -(N) CULVERT IE: 144.10' (N) APRON ELEV 144.50' FLOW -(N) 2– 14 X 7 SS SLIDE GATE SYSTEMS, TYP -(N) APRON ELEV 145.50' (N) TOW ELEV: 155.50' SYSTEM THREE BARREL CULVERT VERN FREEMAN DIVERSION CONVEYANCE CULVERT PLAN N:1927297.30 E: 6222583.93 NEW S3 6.61 (E) DRAINAGE/FLOOD DITCH, PI FER S NOT FOR CONSTRUCTION NOTES: 1. NOT ALL EXISTING FEATURES ARE SHOWN. AERIAL PHOTOGRAPHY VISUAL REFERENCE ONLY. 2. GRADING LIMITS EXTENTS ARE APPROXIMATE AND MAY 08/14/23 REQUIRE FIELD FITTING TO CONFORM TO EXISTING GRADES, EDGES OF ROAD, AND EDGES OF CHANNEL. FINISH GRADE SHALL BE GRADED AT 5% MAXIMUM SLOPE SCALE: AS SHOWN DESIGNED BY: RC/SMU/WLM WITHIN THE LIMITS, WHILE ADHERING TO NOTE 1. DRAFTED BY: P. BARBER ELEVATION 158.0' IS TO BE MAINTAINED FOR A 3' CHECKED BY: JSA/TRS MINIMUM COVER OVER THE HDPE PIPES AND WHERE JOB NO .: 067376 ALREADY EXISTING. USE ELEVATION 158.0' AS THE STARTING POINT WITHIN THE GRADING LIMITS. TLE: 067376 004.dwg C2 90% NOT FOR CONSTRUCTION SHEET 5 OF 10

TAB: S3 067376 (CTB. SAGE с<u>тв</u> AD, RYAN)-067376-CONRU BΥ: 504 MA 6: 34: 12 Flemina 1 IME: nett à

ATTACHMENT B – GEOTECHNICAL EVALUATION MEMORANDUM

Excellence Delivered As Promised

TECHNICAL MEMORANDUM

Re:	Preliminary Geotechnical Evaluation - 30% Design Vern Freeman Diversion System: Three Barrel Culvert & Inverted Siphon United Water Conservation District Saticoy Facility Ventura County, California Project No. 67376
Date:	September 30, 2020
From:	Alma Luna, PE Jerry S. Pascoe, PE, GE
Το:	Ed Wallace Northwest Hydraulic Consultants, Inc. 200 S. Los Robles Avenue, Suite 405 Pasadena, California 91101

In accordance with our agreement with Northwest Hydraulic Consultants, Inc. (Ref. 1), Gannett Fleming is pleased to present this technical memorandum summarizing the results of our preliminary geotechnical evaluation for two locations along the Vern Freeman Diversion (VFD) conveyance and recharge system project in Ventura County, California. The approximate coordinates (WGS84) for the two components of the project are presented in Table 1 and their approximate locations are shown on the attached Vicinity Map, Figure 1.

Project Component	Latitude	Longitude
Three Barrel Culvert	34.2828	-119.1228
Inverted Siphon	34.2803	-119.1251

Northwest Hydraulic Consultants, Inc. (NHC), as the prime consultant, is leading the hydraulic and civil design aspect of the project. Gannett Fleming is providing geotechnical and structural consultation and design services for this effort. Gannett Fleming participated in an onsite meeting with NHC and the owner, United Water Conservation District (United), on May 27, 2020 to discuss the project goals and observe the existing conditions.

PROJECT BACKGROUND

The Three Barrel Culvert (TBC) and the Inverted Siphon (Siphon) are part of United's Saticoy Spreading Grounds site, a facility that recharges the groundwater table through percolation. Specifically, these two structures are road crossings over the open-channel VFD conveyance system. NHC prepared a report in 2016 (Ref. 2) in which the need to replace the TBC and Siphon structures was identified to increase the

Gannett Fleming, Inc. Suite 200 • 2251 Douglas Blvd • Roseville, CA 95661 t: 916.677.4800 www.gannettfleming.com Freeman Diversion Conveyance System – Preliminary Geotechnical Evaluation 30% Design Project No. 67376 September 30, 2020 Page 2 of 8

capacity of the canal. The 2016 report identified the design discharge goal of 750 cfs as the basis of the design in order to improve the sediment management of the system.

The design of the TBC is constrained by an existing canal and 36-inch pipe that crosses perpendicular to the conveyance canal and by a set of flap gates that are to remain operational per the Ventura County Watershed Protection District. Based on these restrictions, the possible alternatives under consideration by NHC (Ref. 3) include:

- Modifying the existing structure to accommodate an additional culvert pipe with a flap gate.
- Replacing the existing structure with a box culvert that can accommodate the necessary flap gate(s).

The scenarios analyzed by NHC indicate changes to the existing channel may include increasing the top of bank or widening the channel to provide the necessary freeboard conditions. The extent of these modifications would need to be evaluated further in future project phase(s).

At the Siphon location, the recommended improvement would include the removal of the existing structure and the construction/installation of a new bridge. The bridges under consideration are a CON/SPAN® O-Series precast system or a CONTECH steel clear span bridge. Either of these alternatives will likely require slight modifications to the existing channel.

SCOPE OF SERVICES

Our scope of services, designated as Tasks 1a in our agreement (Ref. 1), include the following:

- Review existing geotechnical reports prepared by others and containing subsurface data from areas in the vicinity of the proposed improvements.
- Review published topographic, geologic, and fault documents to obtain generalized geotechnical data relevant to the site.
- Develop preliminary geotechnical design parameters and recommendations for 30% development of plans.
- Prepare this preliminary technical memorandum summarizing relevant information from existing geotechnical reports and published data. This memorandum also includes preliminary geotechnical design and considerations for the project earthwork, foundations, and seismic considerations, as applicable.

This scope of our services did not include field subsurface exploration or laboratory testing. Environmental assessment for the presence of hazardous or toxic materials, detailed inspections of the existing conveyance system and evaluation of the system's flow capacity were also beyond our scope of services.

SITE CONDITIONS

Reviewed Documents

We reviewed four previous geotechnical investigations performed at or near the site by other consultants. The four reports are listed in the references below and were provided to us by NHC.

We also received a topographic survey by Stantec for the project site and dated June 11, 2020. The following is a summary of relevant geotechnical information from the reports reviewed.

Proposed Shop Building and Water Tank, Saticoy Facility (Ref. 4 and 5)

In 2012 and 2015, Earth Systems Southern California (ESSC), performed a geotechnical engineering study (Ref 4.) and an update (Ref. 5) for a shop building and water tank at the Saticoy facility. Two borings were drilled at the site of the shop building and water tank to depths between $16\frac{1}{2}$ and $51\frac{1}{2}$ feet below ground surface.

Boring 1 was drilled approximately 200 feet north of the Siphon site and approximately 1,000 ft south of the TBC site. The materials encountered in this boring generally consisted of 8½ feet of loose, olive brown to yellow brown, silty sand (SM). The silty sand was underlain by medium dense to dense, coarse to medium, well graded gravel (GW) with silty sand and cobbles. The gravel extended to the full depth of the boring at 50½ feet below ground surface. Boring 2, just to the east of Boring 1, also encountered about 8 ft of loose silty sand (SM) underlain by the well grade gravel (GW). Groundwater was not encountered in either of the two borings. ESSC concluded in the 2012 report that fault rupture hazard and liquefaction potential were low. However, in the 2015 report, ESSC used a historic high groundwater level of 10 feet and the applicable ground acceleration at the time in a new analysis. In the updated analysis, they indicated that there is a liquefaction potential at the site and the anticipated total settlement would be about 1.1 inches with about 1/2-inch of differential across the proposed structure.

Noble Basin and Saticoy Spreading Grounds Improvements (Ref. 6)

In 1993, Geotechnical Consultants, Inc. (GCI) performed a geotechnical investigation for the UWCD Noble Basin and Saticoy Spreading Ground Improvements projects. The site is located along Los Angeles Avenue, southeast of Saticoy, Ventura County and it extended to the western portion of the VFD system. Subsurface conditions were explored by drilling nine hollow stem auger borings to depths between 17¹/₂ and 41 feet below the ground surface.

Boring DH-1 is the closest boring to the project site from this report and it was drilled approximately 1,500 and 2,500 feet southwest of the Siphon and TBC, respectively. The materials encountered in this boring generally consisted of 10 feet of artificial fill, underlain by alluvium (Qal) soils that extend to the maximum depth explored of 41 feet. The artificial fill is described as very dense, damp, fine-grained silty sand with cobbles and gravel. The top five feet of the alluvium soils is described as very dense, damp, poorly graded sand with scattered fine gravel. Below the poorly graded sand, the alluvium soils become gravelly with cobbles and coarse to very coarse rounded gravel. Groundwater was encountered near the bottom of the hole (40 feet below ground surface), at the time of drilling. Laboratory tests performed indicate the soils have approximate dry densities between 98 to 108 pounds per cubic foot and moisture contents between 5 and 11 percent.

Except for borings DH-7 and DH-9, the other borings also encountered artificial fill, which varied in thickness from about 2¹/₂ to 10 feet. All borings that encountered alluvium deposits were generally consistent with the boring DH-1 description. Soft, dark brown silt lenses were observed in borings DH-2 and DH-3 and loose sands were encountered at about 5¹/₂ feet in boring DH-6. Groundwater depths in other borings varied between 21 to 24 feet below grade.

In general, GCI concluded that the Oak Ridge fault is located about 1 mile from the site and strong ground shaking during an earthquake should be expected. Loose sands encountered in boring DH-6 may become susceptible to liquefaction when saturated. This potentially liquefiable layer was not encountered in DH-1.

Construction of Four Well Pads, Saticoy Groundwater Storage Management Program (Ref. 7)

In 2002, Padre Associates, Inc. (PAS), performed a geotechnical study for the construction of four groundwater well drilling pads within the Saticoy Spreading ground facility. Their study involved reviewing previous geotechnical reports, collecting near-surface bulk samples for laboratory testing, and providing a report summarizing their findings, conclusions and recommendations for the geotechnical aspects of the well pads. Based on their review, PAS concluded that materials underlying the spreading grounds facility are fairly uniform and consist primarily of dense, coarse grained sand, gravel and cobbles.

Other Published Data

The site is approximately 500 feet southeast of the Oak Ridge fault, approximately one-mile northwest of the Wright Road fault and about 3.5 miles southeast of the Ventura fault (Ref. 8).

The site is not located within an Alquist-Priolo Earthquake Fault Zone (Ref. 9). The site is located within a zone identified as being prone to earthquake-induced liquefaction (Ref. 10).

A geologic map of the Ventura 7.5' Quadrangle (Ref. 11), indicates the site is underlain by latest Holocene alluvial fan deposits (Qhfy). The descriptions accompanying the map described this unit as composed of moderately to poorly sorted, and moderately to poorly bedded sandy clay with some gravel.

Site Reconnaissance

A site reconnaissance was performed on May 27, 2020 to observe the existing conditions and to note if any obvious geotechnical concerns are evident. The VFD conveyance canal was unwatered at the time of our site visit.

The canal is unlined and has a trapezoidal shape with 1.7H:1V to 2H:1V side slopes. The side slopes of the canal are lined with riprap, although the area immediately upstream of the TBC crossing consists of grouted riprap. The invert of the canal is generally bare earth, although there is some riprap and concrete fragments upstream and downstream of each crossing. The soils exposed in the canal and adjacent roadways consists of brown silty fine to medium sand. We did not observe indications of instabilities in the canal sideslopes nor excessive erosion or scour. Additionally, the Siphon and TBC structures and surrounding improvements appeared to be performing satisfactorily, with no visible indications of excessive settlement or other geotechnical hazards, such as cracking, buckling, or distortion.

CONCLUSIONS

Based on our review of existing data and observations from our site reconnaissance, it is our opinion from a geotechnical standpoint that the site is suitable for the proposed alternatives being considered to increase flow capacity at the facility, provided the recommendations presented below are considered in the design and construction of the project.

Based on the existing data, the general subsurface profile at the location of the proposed Siphon and TBC is expected to consist of about 8 to 10 feet of silty sand, underlain by well graded gravel with a dense to very dense consistency. The two borings drilled closest to the project site (Ref. 4) indicate the silty sand layer is relatively loose. However, the boring further to the west and within the embankment limits, suggest the silty sand layer is very dense fill material. Assuming the embankment at the Siphon and TBC sites was constructed in a similar manner as the embankment further west, it is anticipated the underlying materials consists of silty sand fill with a dense to very dense consistency. This is consistent with our observations of the existing channel slopes that indicate they appear generally stable and not showing signs of excessive

Freeman Diversion Conveyance System – Preliminary Geotechnical Evaluation 30% Design Project No. 67376 September 30, 2020 Page 5 of 8

erosion or scour. The alluvial soils below the embankment fill are expected to be dense to very dense, gravelly sand with some cobbles.

Groundwater was not encountered in the two borings closest to the project site (Ref. 4). Groundwater was encountered in three of the eight borings further to the west (Ref. 6) at depths between 21 and 40 feet below the ground surface. However, these boring were completed prior to the groundwater recharging system being placed in operation, so the groundwater is expected to be encountered at much shallower depths if and when new construction commences.

RECOMMENDATIONS

Based on the anticipated subsurface soil profile as discussed above, we have provided preliminary geotechnical design parameters for the development and evaluation of alternatives for the Grand Canal Headworks Improvements.

Site and Subgrade Preparation

Subgrade preparation efforts may vary based on the option selected to increase the capacity of the existing structures. Preliminary recommendations are as follows.

After dewatering the Canal, the areas of the proposed improvements should be cleared of any elements of the existing system that will not be part of the improved structure. This may include pipes, gates, electric actuators, concrete structures and foundation elements. Concreted riprap may be stockpiled at an appropriate location for reuse.

Any excavations into the existing levee will most likely encounter dense to very dense silty sands. These materials, classified as type C (Cal-OSHA), should be sloped back at an inclination of 1¹/₂ to 1 (horizontal to vertical) or temporarily shored if excavated at steeper inclination. The final determination of temporary excavation inclinations and requirements for, and design of temporary shoring, is the responsibility of the Contractor.

The subgrade surface should be reasonably free of loose soil, standing water or mud. Prior to placement of fill or rebar for the foundation system, the subgrade should be moisture conditioned and compacted to the requirements for engineered fill described below. The subgrade should be firm and unyielding, and any soft soils should be excavated to expose firm, non-yielding materials.

If the option selected involves the complete removal of the existing structure and partial removal and replacement of the levee, additional geotechnical review and analysis of the levee may be required.

Fill Materials and Placement

On-site materials are anticipated to be suitable for use as engineered fill behind and around the structures. Any soils with organic contents greater than about 3 percent by volume should not be used. Fill materials placed at the site should not contain particles greater than 3 inches in diameter. Any imported soils should be free of organics, debris, and oversize particles. It should be predominantly granular, with at least 20 percent fines and a plasticity index of 12 or less.

All engineered fill should be spread and compacted in lifts not exceeding 8 inches in uncompacted thickness. The engineered fill should be moisture conditioned to at least 2 percent over optimum and compacted to at least 95 percent relative compaction based on ASTM D-1557. Any areas of the service road damaged by the construction activities, should be repaired to match preconstruction conditions.

Freeman Diversion Conveyance System – Preliminary Geotechnical Evaluation 30% Design Project No. 67376 September 30, 2020 Page 6 of 8

Existing Utilities

It is anticipated that overhead wires and possibly underground utilities cross through the project site. The contractor must coordinate with the site representative and the necessary utility owners for proper removal and/or relocation of any existing utilities that may be affected the proposed improvements. Any utility trenches should be backfilled with engineered fill as described above. A shading layer extending at least 6 inches below small diameters pipes and 6 to 12 inches above should be placed prior to placement of engineered fill. The shading layer should consist of granular materials carefully placed and tamped around the utility lines.

Allowable Bearing Pressures

A new structure for the TBC or additions to the existing structure may be supported on a shallow foundation system bearing on the dense to very dense, gravelly sand alluvium.

For preliminary design, an allowable bearing pressure of 3,000 pounds per square foot due to dead plus live loads and 4,000 pounds per square foot for all loads including wind and seismic, may be assumed. At a minimum, footings for the TBC structure should be at least 12 inches embedded into the lowest adjacent grade, such that there is at least 5 feet of horizontal cover. Spread footings may also be used for the bridge at the Siphon site provided they are at least 48 inches wide and 24 inches deep below the lowest adjacent grade.

If a slab-type structure is planned, a modulus of subgrade reaction of 100 psi/in is applicable for subgrade soils that are submerged.

Total long-term settlements of foundations designed per the above criteria are expected to be less than $\frac{1}{2}$ -inch. Due to the presence of granular soils, the settlements are expected to occur relatively immediately upon loading. Differential settlements are expected to be less than $\frac{1}{2}$ of the total settlements. If additions are planned to the existing structure(s), it is recommended to dowel into the existing foundation to minimize differential movements.

Friction Coefficient

Lateral load resistance for the structures may be developed in friction between the foundation bottom and the supporting grade. A friction coefficient of 0.4 is considered applicable¹.

Lateral Design Parameters

Retaining walls should be evaluated to resist lateral earth pressures and any additional lateral loads caused by surcharge on the adjoining ground surface. Assuming the wall backfill consists of engineered fill with similar characteristics to the existing levee fill, the following earth pressures can be assumed for initial evaluation.

- Active earth pressures (level backslope): 35 pcf above water, 17 pcf below water.
- Passive earth pressures¹: 285 pcf above water, 120 pcf below water.

¹ The values presented for passive and frictional resistance can be used in combination and include factors of safety of at least 1.5 to reduce the potential for lateral movement.

Freeman Diversion Conveyance System – Preliminary Geotechnical Evaluation 30% Design Project No. 67376 September 30, 2020 Page 7 of 8

• At-rest earth pressures (level backslope): 50 pcf above water, 25 pcf below water.

When using the "below water" values for active or at-rest pressures, lateral loads due to hydrostatic pressure must also be applied. The upper 1 foot should be neglected for passive resistance unless a scour resistant surface (e.g., concreted riprap or slab) is present.

Seismic Design Parameters

Based on the data reviewed and the 2019 California Building Code, the following parameters should be used for preliminary seismic design:

NAME	VALUE
Site Class	D
Ss	1.938
S ₁	0.726
S _{MS}	1.938
S _{M1}	**
S _{DS}	1.292
S _{D1}	**
PGA	0.858
PGA _M	0.943

** See ASCE 7-16, §11.4.8, Exception 2.

LIMITATIONS

This Preliminary Geotechnical Evaluation Memorandum has been prepared for the sole use of NHC and United Water Conservation District, and is specific to the conditions at the Freeman Diversion Conveyance System as discussed above. The opinions, conclusions, and recommendations contained in this letter are based upon the information obtained from our review of the existing data, site reconnaissance, experience, and engineering judgment, and have been formulated in accordance with generally accepted geotechnical practices that existed at the time this letter was prepared; no other warranty is expressed or implied. In addition, the recommendations presented in this letter are based solely on surface exposures at the site. No subsurface investigation was completed by Gannett Fleming; actual conditions may vary. If conditions encountered in the field differ from those described in this letter, we should be consulted to determine if changes to the conclusions presented herein or supplemental recommendations are required.

The opinions presented in this letter are valid as of the date of this letter for the site being evaluated. Changes in the condition of a site can occur with the passage of time, whether due to natural processes or the works of man. In addition, changes in applicable standard of practice can occur, whether from legislation or the broadening of knowledge. Accordingly, the opinions presented in this letter may be

invalidated, wholly or partially, by changes outside of Gannett Fleming's control. In any case, this letter should not be relied upon after a period of three years without prior review and approval by Gannett Fleming. This document may not be reproduced for any other reason than pertains to the project for which it was prepared.

REFERENCES

(Listed in order as they were referenced in the text)

- 1. Agreement for Subconsultant Services, Subcontract No. 5005686-1, between Northwest Hydraulic Consultants, Inc. (NHC) and Gannet Fleming, Inc., fully executed on May 18, 2020.
- 2. Sediment Transport and Deposition Assessment of Freeman Diversion Conveyance System, Phase 2: Evaluate Alternatives, Final Report, prepared by NHC, dated September 1, 2016.
- 3. Technical Memorandum: VFD Three Barrel Culvert and Inverted Siphon Design Alternative Analysis, prepared by NHC, dated July 16, 2020.
- 4. Geotechnical Engineering Report for United Water Conservation District, Proposed Shop Building and Water Tank, Saticoy Facility, Ventura County, California, prepared by Earth Systems Southern California, dated May 23, 2012.
- 5. Update of Geotechnical Engineering Report for United Water Conservation District, Saticoy Facility, Saticoy Area of Ventura County, California, prepared by Earth Systems Southern California, dated May 28, 2015.
- 6. *Geotechnical Investigation for UWCD Noble Basin and Saticoy Spreading Grounds Improvement,* prepared by Geotechnical Consultants, Inc., dated December 1, 1993.
- 7. Geotechnical Study for Construction of Four Well Pads, Saticoy Groundwater Storage Management Project, prepared by Padre Associates, Inc., dated September 17, 2002.
- 8. *Quaternary fault and fold database for the United States,* accessed July 9, 2019, from USGS web site: http://earthquake.usgs.gov/hazards/qfaults/., U.S. Geological Survey and California Geological Survey, 2006.
- 9. *Earthquake Fault Zones (Alquist-Priolo Earthquake Fault Zoning Act)*, by California Division of Mines and Geology, 1978.
- 10. *Seismic Hazard Zones, Saticoy 7.5-minute Quadrangle*, by Department of Conservation, California Geological Survey, 2003
- 11. Geologic Map of the Saticoy 7.5-minute Quadrangle, Ventura County, California: A Digital Database, by Siang S. Tan, Terry A. Jones, and Kevin B. Clahan, Department of Conservation, California Geological Survey, 2003.

ATTACHMENT C – REFERENCE INFORMATION REGARDING EXISTING GAS LINE

Allen, Jennifer S.

Bryce Cruey <bcruey@nhcweb.com></bcruey@nhcweb.com>
Friday, September 25, 2020 12:13 PM
Allen, Jennifer S.
Conrad, Ryan; Ed Wallace
RE: TBC 30% Design

Jen,

Just to follow up on our phone conversation and to have this issue resolved in email, I summarized the resolution below.

According to Craig at United, the 18" gas lines that are shown in the "As-built" drawings were replaced sometime in recent years by So.Cal. Gas. The new gas line is the 22" line that is shown in the figure Craig sent and it crosses the channel somewhere downstream or upstream of the culverts and is 8 or more feet below the channel invert. Based on the proposed inverts, there should be no issues at all with the high pressure 22" gas line.

Regarding the removal of the abandoned 18" lines (if they still exist) should be included in the removals sheet or summary for the contractor. There would be a utility locate before digging here, Craig will let us know fast if the 18" lines don't exist anymore and it will only be a small correction.

Have a great weekend!

Bryce Cruey, P.E., C.F.M. northwest hydraulic consultants 2600 Capitol Ave, Ste 140 | Sacramento, CA 95816 | United States I am currently working remotely due to COVID-19 and can be reached on my cell phone (612) 418-0565 bcruey@nhcweb.com www.nhcweb.com

This email and any attached files are confidential and intended for the use of the addressee. If you believe you have received this email in error, please notify the sender, delete it, and destroy any copies. Check this email and attachments for viruses; NHC accepts no liability for virus damage caused by email.

From: Allen, Jennifer S. <jeallen@GFNET.com> Sent: Friday, September 25, 2020 11:46 AM To: Bryce Cruey <BCruey@nhcweb.com> Subject: RE: TBC 30% Design

I can chat now, or sometime after lunch. -Jen

From: Bryce Cruey <<u>BCruey@nhcweb.com</u>> Sent: Friday, September 25, 2020 10:53 AM To: Allen, Jennifer S. <<u>jeallen@GFNET.com</u>> Subject: RE: TBC 30% Design

Jen,

Let me know if you have a minute to chat. I ca call you via teams and update you as to the conversation that I just had with Craig.

Bryce

From: Allen, Jennifer S. <<u>jeallen@GFNET.com</u>> Sent: Friday, September 25, 2020 10:31 AM To: Bryce Cruey <<u>BCruey@nhcweb.com</u>> Cc: Conrad, Ryan <<u>rconrad@gfnet.com</u>> Subject: RE: TBC 30% Design

Thanks Bryce.

From: Bryce Cruey <<u>BCruey@nhcweb.com</u>>
Sent: Friday, September 25, 2020 10:28 AM
To: Allen, Jennifer S. <<u>jeallen@GFNET.com</u>>
Cc: Conrad, Ryan <<u>rconrad@gfnet.com</u>>
Subject: RE: TBC 30% Design

Jen,

I have not heard back yet. I just pinged him again.

Bryce

From: Allen, Jennifer S. <jeallen@GFNET.com> Sent: Wednesday, September 23, 2020 2:23 PM To: Bryce Cruey <<u>BCruey@nhcweb.com</u>> Cc: Conrad, Ryan <<u>rconrad@gfnet.com</u>> Subject: RE: TBC 30% Design

Hi Bryce,

Were you able to get any other information from Craig regarding the correct gas line? Or did you want me to respond directly back to Craig?

Thanks, Jen

From: Allen, Jennifer S.
Sent: Monday, September 21, 2020 5:56 PM
To: Bryce Cruey <<u>BCruey@nhcweb.com</u>>
Cc: Conrad, Ryan <<u>rconrad@gfnet.com</u>>
Subject: FW: TBC 30% Design

Hey Bryce,

I don't think this is the same gas line. The drawing is showing a 22'' line under the canal. We are talking about 2 - 18'' lines going under the siphon.

I think we are going to need further clarification still. Thanks, Jen

From: Craig Morgan <<u>craigm@unitedwater.org</u>>
Sent: Monday, September 21, 2020 4:55 PM
To: 'Bryce Cruey' <<u>BCruey@nhcweb.com</u>>
Cc: Allen, Jennifer S. <<u>jeallen@GFNET.com</u>>
Subject: RE: TBC 30% Design

Bryce,

Attached is what we have on the plans for the So Cal Gas Company's lines. They are well below the invert of the canal and even a little deeper than what is shown as there were issues with the boring.

Best Regards,

Craig Morgan, P.E. | Senior Engineer

United Water Conservation District Main (805) 525-4431 • Direct (805) 695-3743

From: Bryce Cruey <<u>BCruey@nhcweb.com</u>> Sent: Monday, September 21, 2020 4:17 PM To: Craig Morgan <<u>craigm@unitedwater.org</u>> Cc: Allen, Jennifer S. <<u>jeallen@GFNET.com</u>> Subject: TBC 30% Design

[EXTERNAL] Craig,

I was talking with Jen over at Gannett Flemming about the 30% design for TBC. There were a few questions that come up based on potential utility conflicts. As shown in the drawing below there are two 18" gas lines that are shown crossing the channel at the TBC perpendicular at an elevation of 143.18. We are proposing to put the new culverts at 144.03 which would not be an issue necessarily, but the as-built elevations did differ with the most recent survey data on the culvert inverts by about 0.5'. That would be a little too close for comfort with utility conflicts. However, the field notes indicate that the lines might actually be crossing over the top of the existing culverts. Additionally, water lines were observed crossing the channel at the TBC. Long story short is that we will need to get a utility locate on these as soon as possible, but certainly, before we have bid ready plans. Can you let me know if United has any information on these utilities? Do we know who owns them?

Secondly, is there any word on the Inverted Siphon?

Thanks.

Bryce Cruey, P.E., C.F.M.

northwest hydraulic consultants 2600 Capitol Ave, Ste 140 | Sacramento, CA 95816 | United States Tel: (916) 371-7400, Ext. 1121 bcruey@nhcweb.com www.nhcweb.com

This email and any attached files are confidential and intended for the use of the addressee. If you believe you have received this email in error, please notify the sender, delete it, and destroy any copies. Check this email and attachments for viruses; NHC accepts no liability for virus damage caused by email.

This message was scanned by Microsoft.

Canal Pothole Drawing - United Water Company

Work presumed to be done under dry conditions

ATTACHMENT D – DESIGN CALCULATIONS

ATTACHMENT D

90 Percent Hydraulic Design Notes - Selected Alternative

Jul-23

USACE 1110-2-2902 requires 2 gate closure for pipes > 36 in

For fast rise in flood waters, 1 active and one passive required; for slow rise 2 active acceptable

Passive gates not feasible with canal function

Use active closure gates both sides - 2 fabricated slide gates

USACE 1110-2-2902 3.3.3.2.4 does not allow use of precast RCB - RCB must be CIP; sloped side walls may be requested (see 4.17.4)

Box Culverts

Options Considered

Several RAS	Several RAS plans run with new rating curve for Inv Siphon based on						n	A3_lin750_	_5-10-22 L8	5gates low	er from system model		
	and 053	0 at Inv S	iphon					sta 17651					
2 RCBs at 3	BC				750 cfs	sta 17651		500 cfs					
	Span	Rise	ι	JS Inv	US WSE	Channel V	Culvert V	US WSE	Channel V	Culvert V	Notes		
3BCR1	:	12	6	144.1	151.72	3.58	5.21	150.05	2.96	3.47	US WSE 1.6' above crown at750 cfs, approx a		
3BCR2		14	6	144.1	151.58	3.67	4.46	150.02	2.99	2.98	US WSE 1.5' above crown at 750 cfs, approx a		
3BCR3		14	8	144.1	151.39	3.82	3.7	150.02	3.02	2.77	Not sealed		
3BCR4		10	6	144.1	151.99	3.4	6.25	150.15	2.89	4.17	US WSE 2' above crown at 750 cfs, approx at		
3BCR5		12	8	144.1	151.45	3.77	4.34	150.05	3	3.24	Not sealed		
3BCR6		14	7	144.1	151.43	3.78	3.83	150.02	3.02	2.77	WSE 0.41' above crown 750 cfs, not sealed at		
3BCR8		14	6	144.1	151.58	3.67	4.46	150.02	2.99	2.98	WSE 1.6' above crown 750 cfs, approx at crov		
3BCR9		14	6.5	144.1	151.5	3.75	4.12	150.01	3.02	2.77	WSE 1.5' above crown 750 cfs, not sealed at !		

Selected Alternative

	W	Н	Entrance Loss Coeff	Exit Loss Coeff	n Culvert
Selected culvert size	14	7	0.5	0.5	0.02

Represented in HEC-RAS Plan SiphonR3_3BCR6.1

Represents channel and headwall gepmetry from 90% draft plans Cross sections developed from terrain based on field survey by Stantec May 2020 Note: results for Plan 3BCR6.1 differ slightky from 3BCR6 due to more accurate representation of 90 percent channel geometry and wingwalls

ATTACHMENT D 90 Percent Hydraulic Design Notes - Selected Alternative

Jul-23

HEC-RAS Cross Section Layout: TBC Culvert at Sta 17524 - 83' long

Plan 3BCR6.1

RAS Results

Reach	R	River Sta	Profile	Q Total		Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)		(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
	2	17873	PF 1	3	75	144.11	149.64	146.81	149.74	0.000503	2.56	146.25	39.45	0.23
	2	17873	PF 2	5	00	144.11	150.39	147.21	150.51	0.000526	2.83	176.83	42.39	0.24
	2	17873	PF 3	7	50	144.11	151.76	147.89	151.92	0.000514	3.14	238.87	47.76	0.25
	2	17761	PF 1	3	75	145.12	149.4	148.01	149.64	0.001632	4.03	96.9	35.5	0.42
	2	17761	PF 2	5	00	145.12	150.15	148.4	150.41	0.001408	4.18	125.01	38.82	0.4
	2	17761	PF 3	7	50	145.12	151.56	149.05	151.83	0.001075	4.28	184.02	45.09	0.36
	2	17656	PF 1	3	75	145.15	149.18	147.8	149.45	0.001849	4.15	90.55	32.5	0.43
	2	17656	PF 2	5	00	145.15	149.96	148.21	150.25	0.001531	4.3	117.11	35.58	0.41
	2	17656	PF 3	7	50	145.15	151.4	148.91	151.7	0.001139	4.45	172.22	41.17	0.37
	2	17607	PF 1	3	75	144.88	149.11		149.36	0.001692	4	93.72	32.4	0.41
	2	17607	PF 2	5	00	144.88	149.9		150.17	0.00147	4.15	120.62	35.34	0.4
	2	17607	PF 3	7	50	144.88	151.36		151.64	0.001146	4.26	176.16	40.74	0.36
	2	17587	PF 1	3	75	144.5	149.14	147.04	149.31	0.000961	3.27	114.84	35.03	0.32
	2	17587	PF 2	5	00	144.5	149.94	147.44	150.12	0.000903	3.48	143.78	37.87	0.31
	2	17587	PF 3	7	50	144.5	151.39	148.15	151.6	0.000779	3.7	202.63	43.08	0.3
	2	17524		Culvert										
	2	17459	PF 1	3	75	144	149.11		149.23	0.000624	2.76	135.64	38.59	0.26
	2	17459	PF 2	5	00	144	149.88		150.02	0.000607	3.01	166.27	41.69	0.26
	2	17459	PF 3	7	50	144	151.22		151.4	0.000534	3.39	221.08	47.08	0.26
	2	17439	PF 1	3	75	143.86	149.13		149.21	0.000434	2.38	157.38	42.58	0.22
	2	17439	PF 2	5	00	143.86	149.9		150	0.000439	2.61	191.24	45.21	0.22
	2	17439	PF 3	7	50	143.86	151.24		151.38	0.000436	2.94	255.11	49.8	0.23
	2	17412	PF 1	3	75	144	149.09	146.63	149.2	0.000566	2.59	144.63	41.99	0.25
	2	17412	PF 2	5	00	144	149.87	146.99	149.99	0.000551	2.81	178.11	44.79	0.25
	2	17412	PF 3	7	50	144	151.21	147.6	151.36	0.000518	3.1	241.62	49.44	0.25
	2	17307	PF 1	3	75	144	148.97	146.88	149.12	0.000901	3.12	120.15	37.31	0.31
	2	17307	PF 2	5	00	144	149.74	147.27	149.91	0.00085	3.33	150.05	40.25	0.3
	2	17307	PF 3	7	50	144	151.09	147.94	151.29	0.000757	3.61	207.5	44.51	0.3

ATTACHMENT D 90 Percent Hydraulic Design Notes - Selected Alternative

Jul-23

2	16917 PF 1	375	143.65	148.66	146.54	148.79	0.000784	2.91	128.72	40.37	0.29
2	16917 PF 2	500	143.65	149.46	146.9	149.6	0.000718	3.08	162.17	43.5	0.28
2	16917 PF 3	750	143.65	150.85	147.53	151.02	0.000628	3.31	226.41	48.95	0.27
2	16776 PF 1	375	143.57	148.57	146.28	148.69	0.000664	2.77	135.4	40.53	0.27
2	16776 PF 2	500	143.57	149.37	146.64	149.51	0.000621	2.96	169.15	43.37	0.26
2	16776 PF 3	750	143.57	150.77	147.26	150.93	0.00056	3.22	233.26	48.31	0.26
2	16472 PF 1	375	143.38	148.37	145.88	148.49	0.000611	2.73	137.51	39.41	0.26
2	16472 PF 2	500	143.38	149.19	146.29	149.32	0.000583	2.93	170.74	42.13	0.26
2	16472 PF 3	750	143.38	150.6	146.94	150.76	0.000539	3.21	233.62	46.85	0.25
2	16395 PF 1	375	143.33	148.38	144.92	148.44	0.000227	1.96	191.45	44.21	0.16
2	16395 PF 2	500	143.33	149.2	145.24	149.27	0.000233	2.22	225.72	46.18	0.17
2	16395 PF 3	750	143.33	150.61	145.83	150.72	0.000241	2.63	284.97	49.59	0.18
2	16384 PF 1	375	143.33	148.29	145.04	148.42	0.000358	2.87	130.85	19.63	0.23
2	16384 PF 2	500	143.33	149.05	145.41	149.24	0.000555	3.47	144.17	13.16	0.26
2	16384 PF 3	750	143.33	150.23	146.06	150.62	0.001517	5.03	148.98		0.34

ATTACHMENT D 90 Percent Hydraulic Design Notes - Selected Alternative

Hydraulic Profile Through Culvert Crossing

ATTACHMENT D

90 Percent Hydraulic Design Notes - Selected Alternative

Jul-23

Cross Drainage Piping

	Proposed vs ex	sisting capacit	v			
	hdpe - 30 in Ol	D concr	, ete - 36 in ID			
D=	26.28 " ID	1	36 " ID			
D=	2.19 ft		3 ft			
A=	3.77 sf	7.	0686			
P=	6.88 ft	9.	4248			
R=	0.55 ft		0.75			
n=	0.011 hdp	be C	0.013 concrete			
Conveyand	e					
K=Q/Sf=	1.486/n*R^0.6	66*A				
K=	340.6316 per	30"				
	681.2632 for	2-30"				
K=	667.1134 for	36" concrete				
Canacity o	f 36" nine - segr	nent over 3-6	0" nines	Inlet Fl	150 74	
capacity c	, oo pipe seg.		e bibee	Outlet Fl	150 12	
HY-8 result	r -		39 cfs @	Headwate	r 153.96	inlet submerged 0.2 ft
			55 CI3 (E	neuuwate	133.50	iner submerged 0.2 ft
Capacity o	f 2-30" HDPE					
Replace pi	pe and concrete	e channel with	2-30" OD HDP	E pipes (1.76	i5 in wall)	
2-26" ID In	v in	152.7 ft				
2-26" ID in	v out	152.3 ft	152.	2 bottom OI)	
Length		113 ft				
Slope	C	.00354				
Vf		5.41 ft/s	uniform f	low		
Qf		39.9 cfs	2 pipes			
				Inlet El	152.7	
				Outlet El	152.3	
HY-8 result	t	39 cfs	@	Headwate	r 154.98	WSE below crown 0.2 ft
				Grd at Inle	158	Freeboard ~3 ft
Inv at inlet	from south				154.1	2-30" should not backwater inlet
TOW at inl	et				158	
Assume fu	Il flow in culver	connection t	o linear basin ('	~backwatere	d by Segment 2)	
Inlet El	152.9					
Outlet El	152.8					
V=	4.0 ft/s					
Outlet Hea	ad Loss C=1.0	HL	0.2	5 ft		
Inlet Head	Loss C=0.5	HL	0.1	2 ft		
Use Headv	vater		155.5	2 ft	Freeboard 2.5 ft	
HY8 result			155.2	1 ft		

Gannett Eleming	NHC/Ur	nited Wa	ater - Freeman	Diversion	- 3BC	067376	_
2251 Douglas Boulevard	Section Wingwa	all Desig	n (14 FT)			Sheet No./I 1 / Rev	Rev. .1
Roseville, CA 95661	Calc. by RC/SMU		Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/20
WINGWALL DESIGN (14 FT) Calculation is based on user de Analysis summary Design summary Overall design utilisation Overall design status Description Sliding stability Overturning stability Bearing pressure Design summary	fined con	Unit plf lb_ft/ft psf	on values Ove Tec ove exp 3.279 Feil Capacity 3740 138198 4000	Applied 12263 94688 1120	summary provided b e does not account fo al system. Design rovided in results. F o S 0.305 1.460 3.571	By inspect stabilized to tie-in v Result FAIL PASS PASS	ction, wingwall ction, wingwall l against sliding vith concrete a
Description		Unit	Provided	Require	d Utilisation	Result	
Stem p0 rear face - Flexural reinfo	rcement	in²/ft	1.571	1.254	0.798	PASS	
Stem p0 - Shear resistance	reamont	Ib/ft ip2/ft	13175	11083	0.841	PASS	
Base - Shear resistance	Cement	lb/ft	14582	5460	0.374	PASS	
Transverse stem reinforcement		in²/ft	0.884	0.389	0.440	PASS	
Transverse base reinforcement		in²/ft	0.884	0.389	0.440	PASS	
Stem type Stem height Stem thickness Angle to rear face of stem Stem density Toe length			Cantilever $h_{stem} = 14 \text{ ft} \leftarrow$ $t_{stem} = 18 \text{ in}$ $\alpha = 90 \text{ deg}$ $\gamma_{stem} = 150 \text{ pcf}$ $h_{ree} = 22.5 \text{ ft} \leftarrow$		Conservativ at tallest se	ve rounding of w action for design	ingwall height purposes.
Base thickness			thase = 18 in		t base – h b		
Base density			Vhase = 150 pcf		1_54666 = 11_54		
Height of retained soil			h _{rot} = 14 ft 		Conservative	retained soil na	rameters for
Angle of soil surface			$\beta = 0 \text{ deg}$		tallest section	of wingwall for	design purpose
			$\beta = 0 \operatorname{deg} $				
Depth of cover			ucover – U II				
Retained soil properties							
Soil type			Dense fine or	silty sand			
Moist density			γ _{mr} = 120 pcf		Based on Sept. 20	020 Geotechnica	al Memorandur
Saturated density			γ _{sr} = 120 pcf		by Gannett Flemir	ng (Geotech Mer	mo).
Base soil properties ←							
Soil type			Dense fine or	silty sand			
Soil density			$_{\rm 1} = 120 \rm ncf$, cana			
Gross allowable bearing processing				00 pcf 🧹	Based on	Geotech Memo	for seismic
			Qallow_gross - 40	oo psi	loading plu	us all other loads	3.
NOISMUS GOTOLIS					Kh - 0.5*(PCAm) -	- 0 5*(0 0/2) fro	m Geotoph Mr
	- 4		N 0				
Horizontal seismic acceleration fac	ctor		K _h = 0.472		Kv = 0 (conservativ	ve assumption)	
Horizontal seismic acceleration facto	ctor r		$K_h = 0.472 \leftarrow K_v = 0 \leftarrow 0$	<u> </u>	Kv = 0 (conservativ	ve assumption)	

Tekla Tedds	Project NHC/United	Water - Freeman	Diversion - 3F	30	Job Ref. 067376	
Gannett Fleming	Section	Water - Freeman			Sheet No /Re	M
2251 Douglas Boulevard	Wingwall De	sign (14 FT)			3 / Rev.1	v.
Suite 200	Calc. by	Date	Chk'd by	Date	App'd by	Date
Roseville, CA 95661	RC/SMU	7/11/2023	J. Allen	7/18/2023	T. Sell	8/11/2023
Passive pressure coefficient		K _P = 2.375 ←	—— Kp = 2	85 pcf / 120 pcf, fi	rom Geotech Me	no.
Using Mononobe-Okabe theory						
Active dynamic pressure coefficier	ıt	K _{AE} = 0.754				
Passive dynamic pressure coefficient	ent	K _{PE} = 2.374 <	Assi and	Imed as Kp. Tedo Kpe to differ, so c	hanged slightly.	es Kp
User defined combination						
Load combination 1		$1 \times \text{Dead} + 1$	\times Live + 1 \times La	ateral earth		
Sliding check						
Vertical forces on wall						
Wall stem		F _{stem} = A _{stem} ×	ς γ _{stem} = 3150 p	lf		
Wall base		$F_{base} = A_{base} \times$	γ _{base} = 5400 p	lf		
Total		F _{total_v} = F _{stem}	+ F _{base} = 8550	DIF		
Horizontal forces on wall						
Surcharge load		$F_{sur h} = K_A \times S$	Surcharge _L × h	_{eff} = 1132 plf		
Line loads		F _{P_h} = P _{D1} = 2	263 plf		By inspection, wi	ngwall is
Moist retained soil		F _{moist_h} = K _A	$\gamma_{\rm mr} \times h_{\rm eff}^2 / 2 =$	4209 plf	stabilized against	t sliding due to
Total		F _{total_h} = F _{sur_h}	+ FP_+ + Fmoist_	_h = 5604 plf		le apron.
Check stability against sliding						
Base soil resistance		$F_{exc_h} = K_P \times \gamma$	$\gamma_{ m b} imes ({ m h}_{ m pass}$ + ${ m h}_{ m bas}$	_{se}) ² / 2 – 321 plf		
Base friction		F _{friction} = F _{total_}	v × K _{fbb} = 3420	plf		
Resistance to sliding		F _{rest} = F _{exc_h} +	F _{friction} = 3741	plf		
Factor of safety		$FoS_{sl} = F_{rest} /$	F _{total_h} = 0.668	< 1.5		
			FAIL - F	actor of safety	r against slidir	ng is inadequate
Overturning check						
Vertical forces on wall						
Wall stem		$F_{stem} = A_{stem} \times$	α γ _{stem} = 3150 p	lf		
Wall base		$F_{base} = A_{base} \times$	ς γ _{base} = 5400 p	lf		
Total		$F_{total_v} = F_{stem}$	+ F _{base} = 8550	plf		
Horizontal forces on wall						
Surcharge load		$F_{sur_h} = K_A \times S$	Surcharge∟×h	_{eff} = 1132 plf		
Line loads		$F_{P_h} = P_{D1} = 2$	2 63 plf			
Moist retained soil		$F_{moist_h} = K_A \times$	$\gamma_{mr} \times h_{eff}^2 / 2 =$	4209 plf	h	
Base soil		$F_{exc_h} = -K_P \times$	$\gamma_{b} imes (h_{pass} + h_{bass})$	_{ase})² / 2 = -321 p	olf < h_ba	ss = 0 se = t_base
Total		F _{total_h} = F _{sur_h}	+ F _{P_h} + F _{moist_}	_h + F _{exc_h} = 528	3 plf	
Overturning moments on wall						
Surcharge load		$M_{sur_OT} = F_{sur_}$	$h \times X_{sur_h} = 876$	9 lb_ft/ft		
Line loads		M _{P_OT} = abs(F	$P_{D1}) \times (p_1 + t_{base})$	e) = 2235 lb_ft/ft	t ← p1 = 7	ft
Moist retained soil		$M_{moist_{OT}} = F_{mo}$	$oist_h imes X_{moist_h} =$	21747 lb_ft/ft		
Total		$M_{total_{OT}} = M_{su}$	_{r_ot} + M _{P_ot} + I	M _{moist_OT} = 3275	2 lb_ft/ft	
Restoring moments on wall						
Wall stem		$M_{\text{stem}_R} = F_{\text{sten}}$	n × X _{stem} = 7323	37 lb_ft/ft		
Wall base		$M_{base_R} = F_{base}$	_e × x _{base} = 6480)0 lb_ft/ft		

Tekla Tedds	Project				Job Ref.				
	NHC/United Water - Freeman Diversion - 3BC 067376								
Gannett Fleming	Section	an (14 ET)			Sheet No./Rev				
Suite 200				D (4 / Rev. I				
Roseville, CA 95661	RC/SMU	Date 7/11/2023	J. Allen	Date 7/18/2023	T. Sell	B/11/2023			
			-						
Base soil		M _{exc_R} = -F _{exc_t}	n × x _{exc_h} = 160	b_ft/ft					
Total		M _{total_R} = M _{stem_}	_R + M _{base_R} + M	_{exc_R} = 138198	lb_ft/ft				
Check stability against overturn	ing				EM 1110-2-	·2100 (Dec. 2005),			
Factor of safety		$FoS_{ot} = M_{total_R}$	/ M _{total_OT} = 4.22	2 > 1.5	Table 3-3, 0 Usual Load	Ordinary Category, Condition.			
			PASS - Facto	r of safety aga	inst overturn	ing is adequate			
Bearing pressure check									
Vertical forces on wall									
Wall stem		$F_{stem} = A_{stem} \times$	γ _{stem} = 3150 plf						
Wall base		$F_{base} = A_{base} \times$	γ _{base} = 5400 plf						
Total		F _{total_v} = F _{stem} +	- F _{base} = 8550 pl	f					
Horizontal forces on wall									
Surcharge load		$F_{sur_h} = K_A \times S$	urcharge _L × h _{eff}	= 1132 plf					
Line loads		F _{P_h} = P _{D1} = 2 0	63 plf						
Moist retained soil		$F_{moist_h} = K_A \times f$	$\gamma_{mr} \times h_{eff}^2 / 2 = 4$	209 plf					
Base soil		F_{pass_h} = - $K_P \times$	$\gamma_b imes (d_{cover} + h_{bas})$	_{se})² / 2 = -321 p	olf				
Total		$F_{total_h} = F_{sur_h}$	+ F _{P_h} + F _{moist_h} ·	+ F _{pass_h} - F _{total_}	v × K _{fbb} = 1863	plf			
Moments on wall									
Wall stem		M_{stem} = F_{stem} ×	x _{stem} = 73237 lb	_ft/ft					
Wall base		M_{base} = F_{base} ×	x _{base} = 64800 lb	_ft/ft					
Surcharge load		M_{sur} = - F_{sur_h} ×	x _{sur_h} = -8769 lb	_ft/ft					
Line loads		$M_P = -(P_{D1} \times (p_{D1} \times p_{D1} \times p$	o ₁ + t _{base})) = -22 3	35 lb_ft/ft					
Moist retained soil		$M_{moist} = -F_{moist}$	$h \times x_{moist_h} = -21$	747 lb_ft/ft					
Base soil		$M_{pass} = -F_{pass_h}$	× x _{pass_h} = 160	lb_ft/ft					
Total		M _{total} = M _{stem} +	$M_{base} + M_{sur} + N_{sur}$	NP + Mmoist + Mp	_{ass} = 105446 lb	_ft/ft			
Check bearing pressure									
Distance to reaction		$\overline{\mathbf{x}} = \mathbf{M}_{\text{total}} / \mathbf{F}_{\text{tot}}$	_{al_v} = 12.333 ft						
Eccentricity of reaction		$e = \overline{x} - I_{base} / 2$	2 = 0.333 ft						
Loaded length of base		I _{load} = I _{base} = 24	l ft						
Bearing pressure at toe		$q_{toe} = F_{total_v} / I_{l}$	$base \times (1 - 6 \times e /$	l _{base}) = 327 psi	f				
Bearing pressure at heel		$q_{heel} = F_{total_v} /$	$I_{base} \times (1 + 6 \times e)$	/ I _{base}) = 386 p	sf				
Allowable bearing capacity		$q_{allow} = q_{allow_groups}$	_{pss} = 4000 psf						
Factor of safety	DASS	$FoS_{bp} = q_{allow} / $	max(q _{toe} , q _{heel})	= 10.366 xaada maximi	um applied be	oring process			
	FA33 -	Allowable bear	ng pressure ex		uni applieu be	anny pressure			
User defined combination				4	- 4 1				
Load combination 2		I × Dead + 1 >	k Live + 1 × Ear	ициаке + 1 × L	aleral earth				
Sliding check									
Vertical forces on wali				By insp	ection. winowall	is			
Wall stem	>>	F _{stem} = A _{stem} ×	γ _{stem} = 3150 plf	stabilize	ed against sliding	g due to			
Wall base		Fbase - Abase ×	γ _{base} = 5400 plf	ue-in W	an concrete apro	n			
IOTAI		⊢ _{total_v} = ⊢ _{stem} +	- ⊢ _{base} = 0550 pl	T					

Tekla Tedds	Project NHC/United	Water - Freema	n Diversion - 3	BC	067376	
Gannett Fleming	Section				Sheet No./Rev	<i>ı</i> .
2251 Douglas Boulevard Suite 200	Wingwall De	esign (14 FT)		1	5 / Rev.1	
Roseville, CA 95661	Calc. by RC/SMU	Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/202
Horizontal forces on wall						/
Surcharge load		$F_{sur_h} = K_A \times$	Surcharge∟ × h	_{eff} = 1132 plf		
Line loads		$F_{P_h} = P_{D1} = 2$	263 plf			
Moist retained soil		$F_{moist_h} = K_A$	$\langle \gamma_{mr} \times h_{eff}^2 / 2 =$	4209 plf		
Seismic		F _{seismic_h} = (K	AE - KA) $\times \gamma_{\rm mr} \times \gamma_{\rm mr}$	$(h_{soil} + h_{base})^2 / 2 =$	= 6660 plf	
Total		Ftotal h = Fsur_	h + FP_h + Fmoist	_h + F _{seismic_h} = 12 2	263 plf	
Check stability against sliding					By inspection	. wingwall is
Base soil resistance		Fexch = KPE >	$\gamma_{\rm b} \times (h_{\rm pass} + h_{\rm b})$	_{ase}) ² / 2 = 320 plf	stabilized aga	ainst sliding d
Base friction		Friction = Ftotal	$v \times K_{\rm fbb} = 3420$	plf	tie-in with cor	ncrete apron.
Resistance to sliding		$F_{rest} = F_{evc} h$	+ F _{friction} = 3740	plf		
Factor of safety		$FoS_{sl} = F_{rest}/$	$F_{\text{total } h} = 0.305$	< 1.1		
			FAIL - F	Factor of safety a	aqainst slidin	g is inadec
Avarturning abook					0	
Vertical forces on wall						
Wall stem		F _{stem} = A _{stem} :	< γ _{stem} = 3150 p	olf		
Wall base		$F_{base} = A_{base}$	< γ _{base} = 5400 p	olf		
Total		F _{total_v} = F _{stem}	+ F _{base} = 8550	plf		
Horizontal forces on wall						
Surcharge load		$F_{sur_h} = K_A \times$	Surcharge∟ × h	_{eff} = 1132 plf		
Line loads		$F_{P_h} = P_{D1} = 2$	263 plf			
Moist retained soil		$F_{moist_h} = K_A >$	$\times \gamma_{ m mr} imes h_{ m eff}^2$ / 2 =	4209 plf		
Base soil		$F_{exc_h} = -K_{PE}$	$ imes \gamma_{b} imes$ (h _{pass} + h	_{base}) ² / 2 = -320 p	lf	
Seismic		F _{seismic_h} = (K	AE - KA) $ imes \gamma_{mr} imes$	(h _{soil} + h _{base}) ² / 2 =	- 6660 plf	
Total		F _{total_h} = F _{sur_}	h + FP_h + Fmoist	_h + F _{exc_h} + F _{seismi}	_{ic_h} = 11943 pli	f
Overturning moments on wall						
Surcharge load		Msur ot = Fsur	$h \times X_{sur} h = 876$	9 lb_ft/ft		
Line loads		$M_{\rm POT} = abs($	$P_{D1} \times (D_1 + t_{bas})$	a) = 2235 lb ft/ft		
Moist retained soil		$M_{\text{moist}} \circ T = F_{\text{m}}$	$a_{\text{point}} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum$	21747 lb ft/ft		
Seismic		$M_{\text{moist}} = 1$			ït	
Total		Mtetel of = Ma	seismic_n \wedge seismic	C_n = 01333 ID_n/1	or = 94688 lb	ft/ft
					_01 - 04000 lb	_1010
Restoring moments on wall						
vvali stem		$M_{stem_R} = F_{ste}$	$m \times X_{stem} = 7323$	37 Π_Π/Π		
vvall base		$M_{base_R} = F_{base_R}$	$_{se} \times X_{base} = 6480$	UUID_TT/TT		
Base soil		$M_{exc_R} = -F_{exc}$	_h × x _{exc_h} = 160	u ib_tt/ft		
lotal		M _{total_R} = M _{ste}	$m_R + M_{base_R} +$	M _{exc_R} = 138198	Ib_ft/ft	e with USAC
Check stability against overturnin	ng				EM 1110-2-21	00 (Dec. 200
Factor of safety		FoS _{ot} = M _{total}	_R / M _{total_OT} = 1 PASS - Fac	.46 > 1.1 tor of safety aga	Table 3-3, Ord Extreme Load inst overturn	dinary Catego Condition. ing is adeo
Bearing pressure check						
Vertical forces on wall						
Wall stem		Entern = Autors	< Votom = 3150 m	lf		
		 stem – rustem / 				

Tekla Tedds	Project NHC/United	Water - Freema	n Diversion - 3	BC	Job Ref. 067376	
Gannett Fleming	Section				Sheet No./Re	ev.
2251 Douglas Boulevard	Wingwall De	sign (14 FT)			6 / Rev.1	
Suite 200 Roseville, CA 95661	Calc. by RC/SMU	Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/2023
Wall base		F _{base} = A _{base} :	× γ _{base} = 5400 β	olf		
Total		F _{total_v} = F _{stem}	+ F _{base} = 8550) plf		
Horizontal forces on wall						
Surcharge load		$F_{sur_h} = K_A \times F_{sur_h}$	Surcharge _L \times h	n _{eff} = 1132 plf		
Line loads		$F_{P_h} = P_{D1} = 2$	263 plf			
Moist retained soil		$F_{moist_h} = K_A >$	$<\gamma_{ m mr} imes h_{ m eff}^2$ / 2 =	= 4209 plf		
Base soil		F _{pass_h} = -K _P :	$ imes \gamma_{b} imes (d_{cover} + I)$	n _{base})² / 2 = -321 p	lf	
Seismic		F _{seismic_h} = (K	AE - KA) $\times \gamma_{mr} \times$	$(h_{soil} + h_{base})^2 / 2 =$	6660 plf	
Total		F _{total_h} = F _{sur_l}	h + F _{P_h} + F _{moist}	_h + F _{pass_h} + F _{seisn}	nic_h - $F_{total_v} \times$	K _{fbb} = 8523 plf
Moments on wall						
Wall stem		M _{stem} = F _{stem}	× X _{stem} = 73237	/ lb_ft/ft		
Wall base		M _{base} = F _{base}	× X _{base} = 64800) lb_ft/ft		
Surcharge load		$M_{sur} = -F_{sur} h$	$\times X_{sur h} = -8769$	Bib ft/ft		
l ine loads		$M_{\rm P} = -(P_{\rm D1} \times$	$(p_1 + t_{base})) = -2$	2235 lb_ft/ft		
Moist retained soil		M _{moist} = -F _{mois}	$(P + V_{moist h} = -)$	21747 lb_ft/ft		
Base soil		Moass = -Foass	$h \times X_{\text{pass } h} = 16$	0 lb_ft/ft		
Seismic		Mseismic = -Fse	ismic h X X seismic h	a = -61935 lb_ft/ft		
Total		M _{total} = M _{stem}	+ M _{base} + M _{sur} -	+ M _P + M _{moist} + M _p	_{ass} + M _{seismic} =	43510 lb ft/ft
Check bearing pressure						—
Distance to reaction		$\overline{\mathbf{x}} = \mathbf{M}_{\text{total}} / \mathbf{F}_{\text{total}}$	total v = 5.089 ft			
Eccentricity of reaction		$e = \overline{x} - b_{aso}$	/ 2 = -6.911 ft			
Loaded length of base		$I_{load} = 3 \times \overline{x}$	= 15.267 ft			
Bearing pressure at toe		$q_{toe} = 2 \times F_{tot}$	al v / Iload = 112 () psf		
Bearing pressure at heel		$q_{heel} = 0 \text{ psf}$				
Allowable bearing capacity		$q_{allow} = q_{allow}$	_{gross} = 4000 psf			
Factor of safety		$FoS_{bp} = q_{allow}$	/ max(q _{toe} , q _{he}	_{el}) = 3.571		
	PASS -	Allowable bea	ring pressure	exceeds maxim	um applied b	pearing pressure
WINGWALL DESIGN (14 FT)			In conform EM 1110-	nance with USACE 2-2104 (Nov.		
Retaining wall design in accord	ance with ACI	318-19 <	 2016), See Additional provided, 	ctions 2 and 3. information where applicable.	Tedds cal	culation version 2.9.11
Concrete details						
Compressive strength of concrete		f' _c = 4500 psi				
Concrete type		Normal weig	ht			
Reinforcement details						
Yield strength of reinforcement		f _y = 60000 ps	si			
Modulus of elasticity or reinforcem	ent	Es = 290000	uu psi			
Compression-controlled strain limi	t	ε _{ty} = 0.002	In conforman 2016), Table	ce with USACE EM 2-1, for "formed and a basin walls, chute	1110-2-2104 (I screeded surf	Nov. aces
Front face of stem		_{Csf} = 3 in	channel lining	g slabs on grade: gr	eater than 12 ir	, anu ງ.
Rear face of stem		c _{sr} = 3 in	and less than	24 in. thick".		
Top face of base		c _{bt} = 3 in				
Bottom face of base		c _{bb} = 3 in				

Tekla Tedds	Project NHC/United	Nater - Freema	n Diversion -	3BC	Job Ref. 067376	
Gannett Fleming 2251 Douglas Boulevard	Section Wingwall Des	sign (14 FT)			Sheet No./Re 8 / Rev.1	V.
Suite 200 Roseville, CA 95661	Calc. by RC/SMU	Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/2023
ading details - Combination No.4 - kips/ft ²	Shear force - Combi	nation No.4 - kips/ft		Bending moment - Combination	n No.4 - kips_ft/ft	
1.1.38 0.27	1026 52 50 6 0224	7.1		-14.4		98.6 118.2
Check stem design at base of s	tem	h - 40 in				
		n = 18 in				
Rectangular section in flexure -	Section 22.3	M - 77470 W	£1./£1			
Design bending moment combina	lion 2)_II/IL /2 – 14 E in			
Compression reinforcement	dod	$u = 11 - C_{sr} - \varphi$	sr / 2 - 14.3 If	I		
Area of compression reinforcement provid			$\frac{1}{2}$ $\frac{1}{4}$	- 0 442 in2/ft		
Topsion reinforcement provided	nt provided	Asf.prov – $\pi \times 0$	βsf ⁻ / (4 × Ssf) - ⊢6" α/α	- 0.442 m ⁻ /it		
Area of tanaian minforcement provided	viale al		2 0 C/C	- 4 2/4		
Area of tension reinforcement pro		$A_{sr.prov} = \pi \times 0$	$p_{sr} - / (4 \times S_{sr})$	= 1.5/1 in²/it		
Maximum reinforcement spacing -	- cl.7.7.2.3	$s_{max} = min(18)$	$3 \ln, 3 \times n) = 7$	18 in DAGO Deinferr		
Donth of compression block		o - 4	F / (0.0E \	PASS - Reinford	cement is add	equately space
Neutral avia fastar al 22.2.2.4.2		$a - A_{sr.prov} \times 1$	ly / (U.OO × I c)	- 2.053 III		- 0.005
Neutral axis lactor - cl.22.2.2.4.3		$p_1 = \min(\max)$	x(0.85 - 0.05)	\times (I _c - 4 KSI) / I KSI,	0.05), 0.85) -	= 0.825
		$c = a / \beta_1 = 2$	489 in			
Strain in reinforcement		$\varepsilon_{\rm t} = 0.003 \times 0$	(d - c) / c = 0.0	014478		
Other with me doubting for them				Section is in		controlled zon
Strength reduction factor		$\phi_f = \min(\max_{i=1}^{n} \phi_i)$.(0.05 + 0.25)	$\times (e_t - e_{ty}) / 0.003, 0.$	05), 0.9) – 0.	,
		IVIn – Asr.prov >	(u - a / 2)	.) – 105619 ID_IVIT		
Design flexural strength		ϕ IVIn = ϕ f × IVIr	n = 95237 ID_1	n/m		
		$M / \phi M_n = 0.8$	310			
		PASS - L	esign flexur	al strength excee	ds factored b	enaing momen
By iteration, reinforcement require	a by analysis	$A_{\rm sr.des} = 1.25$	4 IN*/IL 19 v h - 0 29	0 in 2/ft		
PASS -	CI.7.0.1.1 Area of reinfor	A _{sr.min} = 0.00	ed is areater	than minimum ar	ea of reinfor	cement require
Postongular agation in choor	Reation 22 E		US	ACE EM 1110-2-210	4 (Nov. 2016).	Section 2.9
Design shear force	JECHUII 22.3	\/ = 11083 lb	/ft ^	juires 0.003 instead o	f 0.0018.)/# (both factor)
Concrete modification factor - cl 1	924	λ = 1	As_ As_	_min = 0.003*n*(12 ir _min < As_prov = (1.9	איני) = 0.648 in/2 571+0.442) in/2	2/ft (both faces)
Depth of tension reinforcement	√.∠.⊤	d = 14 50 in				. /
Size effect modification factor - cl	225513	$\lambda_{s} = \min(\sqrt{12})$	/ (1 + (d / 1 in	(1, 1, 0) = 0)4	
Reinforcement ratio	22.0.0.1.0	$\Lambda_{\rm S} = \Pi_{\rm H} \sqrt{2}$, (, (u , i)) (= 0 000	i, ioj, i.o) – 0.9 (7	
Nominal concrete shear strongth	- ean 22 5 5 1	$\mu = r_{sr.prov} / 0$	$\lambda = 0.003$	$5 \vee \lambda \rangle \vee \sqrt{f'} \vee 1 \sim$	si) v d- 1766	7 lb/ft
Strongth roduction factor	- equ.22.0.0.1		Λs × Λ × μ ^m ,		orj x u- 1700	
Suengui reduction lactor		ψs = 0.75				

Tekla Tedds	Project NHC/United V	Job Ref. Water - Freeman Diversion - 3BC 067376								
Gannett Fleming	Section				Sheet No /Rev					
2251 Douglas Boulevard	Wingwall Des	sign (14 FT)			9 / Rev.1					
Roseville, CA 95661	Calc. by	Date	Chk'd by	Date	App'd by	Date				
,	RC/SMU	7/11/2023	J. Allen	7/18/2023	T. Sell	8/11/2023				
Design concrete shear strength - c	1.7.6.3.1	$\phi V_c = \phi_s \times V_c =$	13175 lb/ft							
5 5	5									
		• , ••••	•	PASS - No she	ar reinforcem	ent is required				
Horizontal reinforcement paralle	I to face of st	m								
Minimum area of reinforcement - c	17611	A = 0.0018	8 × t = 0 38	9 in²/ft						
Transverse reinforcement provider	4	$A_{\text{sx.req}} = 0.00$ R	0 ∧ istem – 0.00 2" c/c each fa							
Area of transverse reinforcement r	provided	$\Delta_{max} = 2 \times \pi$	× h² / (/ × s	$a_{1} = 0.884 \text{ in}^{2}/\text{ft}$						
	PASS - Area	$A_{\text{sx.prov}} = 2 \times \pi$	×ψsx / (+ × 3s)	greater than an	ea of reinforc	ement required				
.	1 A33 - Alea	or remorcement	n provided is	greater than ar		ementrequired				
Check base design at toe			As_m	$\sin = 0.003^{*}h^{*}(12 \text{ in})$	/ft) = 0.648 in^2/	ft (both faces)				
Depth of section		h = 18 in	Note As_m	tnat t_stem = n = 1 iin < As_prov = 0.8	8 in. 84 in^2/ft (both fa	aces)				
Rectangular section in flexure -	Section 22.3		_		,	,				
Design bending moment combinat	ion 2	M = 91912 lb_	_ft/ft							
Depth of tension reinforcement		$d = h - c_{bb} - \phi_{bb}$	₀ / 2 = 14.5 in							
Compression reinforcement provid	led	No.6 bars @ 1	No.6 bars @ 12" c/c							
Area of compression reinforcemen	it provided	$A_{bt,prov} = \pi \times \phi_{bt}^2 / (4 \times s_{bt}) = 0.442 \text{ in}^2/\text{ft}$								
Tension reinforcement provided	Tension reinforcement provided									
Area of tension reinforcement prov	Area of tension reinforcement provided			1.571 in²/ft						
Maximum reinforcement spacing -	Maximum reinforcement spacing - cl.7.7.2.3			in						
				PASS - Reinford	ement is ade	quately spaced				
Depth of compression block		$a = A_{bb.prov} \times f_y$	/ (0.85 × f'c) =	2.053 in						
Neutral axis factor - cl.22.2.2.4.3		β_1 = min(max(0.85 - 0.05 × (f'c - 4 ksi) / 1 ksi, 0.65), 0.85) = 0.825								
Depth to neutral axis		c = a / β₁ = 2.489 in								
Strain in reinforcement		$\epsilon_t = 0.003 \times (d - c) / c = 0.014478$								
				Section is in	the tension o	controlled zone				
Strength reduction factor		φ _f = min(max(0).65 + 0.25 ×(ε	εt - ε _{ty}) / 0.003, 0.0	65), 0.9) = 0.9					
Nominal flexural strength		$M_n = A_{bb,prov} \times f_y \times (d - a / 2) = 105819 lb_ft/ft$								
Design flexural strength		$\phi M_n = \phi_f \times M_n = 95237 \text{ b} \text{ ft/ft}$								
5 5		$M / \phi M_0 = 0.965$								
		PASS - De	sian flexural	strenath exceed	ds factored be	endina moment				
By iteration, reinforcement require	d by analysis	A _{bb.des} = 1.512	in²/ft	J		5				
Minimum area of reinforcement - c	1.7.6.1.1	$A_{hb min} = 0.0018 \times h = 0.389 \text{ in}^2/\text{ft}$								
PASS - A	Area of reinfor	cement provided	d is greater th	an minimum ar	ea of reinforc	ement required				
Poetangular soction in shear - S	action 22 5	•	U							
Design shear force		V = 5460 lb/ft	Ab_min = 0 Ab_min < A	.003*h*(12 in/ft) = (b_prov = (1 571+0).648 in^2/ft (bot 442) in^2/ft (bot	h faces) h faces)				
Concrete modification factor - cl 19	9.2.4	$\lambda = 1$		p.c. (
Depth of tension reinforcement		d = 14 50 in								
Size effect modification factor - cl	22.5.5.1.3	$\lambda_s = \min(\sqrt{2}/$	(1 + (d / 1 in) /	(10)), 1,0) = 0 90	4					
Reinforcement ratio	22.0.0.1.0	$0 = A_{hh} \operatorname{prov} / d$	= 0 009		-					
Nominal concrete shear strength	ean 22 5 5 1	$\mu - A_{bb,prov} / \alpha = 0.009$								
Strongth reduction factor	oqn.22.0.0.1	$V_c = \min(8 \times \lambda \times \rho^{1/3}, 5 \times \lambda) \times \sqrt{(t_c \times 1 \text{ psi})} \times d = 19443 \text{ lb/ft}$								
		$\phi_{\rm s} = 0.75$								
Design concrete snear strength - c	a.7.0.3.1	$\phi V_c = \phi_s \times V_c = 14582 \text{ lb/ft}$								
		$V / \phi V_c = 0.374$	4							

Tekla. Tedds	Project NHC/United	Water - Freema	n Diversion - 3E	3C	Job Ref. 067376	
Gannett Fleming 2251 Douglas Boulevard	Section Wingwall De	esign (14 FT)			Sheet No./Rev 10 / Rev.1	Ι.
Suite 200 Roseville, CA 95661	Calc. by RC/SMU	Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/2023
				PASS - No she	ar reinforcer	nent is required
Transverse reinforcement parall	el to base	A human = 0.00	18 × there = 0 38	39 in²/ft ←	_	
Transverse reinforcement provide	4	No 6 bars @	12" c/c each fa			
Area of transverse reinforcement r	arovidod	A 2 v	$\pi \times \phi^2 / (4 \times \phi)$	$\lambda = 0.994$ in 2/ft		
Area of transverse reinforcement		$A_{bx.prov} - 2 \times$	$\pi \times \psi_{\text{bx}} / (4 \times \text{St})$	(x) = 0.004 m/m	a of roinford	omont roquiror
	FA33 - AIG	a or remittreeme	Ab n	$g = 0.003^{*}h^{*}(12 \text{ in})$	$f(t) = 0.648 \text{ in}^2$	P/ft (both faces)
			Note	that t_base = $h = 18$	3 in.	
			Ab_n	$nin < Ab_prov = 0.88$	34 in^2/ft (both	faces)
				3"→ ←→ ← 3"		
			No.6 bars @ 12" horizontal reinforcem parallel to face of s	c/c tem		
			No.6 bars @ 12" No.6 bars @ 12" c	c/c	c/c	
· · · · · ·	· · · · ·			╤╉		
		<u></u>				
			No.8 bars @ 6" c	/c ' 3-		
No.6 bars @ 12" c/c transverse reinforceme in base	nt					
Reinforcement	details					

Gannett Eleming	NHC/United Water - Freeman Diversion - 3BC					06737	067376		
2251 Douglas Boulevard	Headwall	wall Design (Culvert Spans)				1 / R	1 / Rev.4		
Roseville, CA 95661	Roseville, CA 95661 Calc. by RC/SMU		Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd b T. Sel	y Date I 8/11/20		
HEADWALL DESIGN (CULVERT S	SPANS) ned coml	binatio	n values Ove Ted	erall design Ids software rall structur	summary provided does not account f	by Tede for	ds calculation versio		
Analysis summary			exp	lanations p	rovided in results.				
Overall design utilisation			0.946						
			Pass				By inspection,		
Description		Unit	Capacity	Applied	FoS	Result	externally		
Sliding stability		plf	3162	2001	1.057	FAIL	stable due to		
Overturning stability		lb_ft/ft	18030	10508	1.786	PASS	connection wit		
Bearing pressure		pst	4000	2615	1.530	PASS	the roof/top		
Design summary									
Description		Unit	Provided	Require	d Utilisation	Result			
Stem p0 rear face - Flexural reinford	cement	In²/ft Ib/ft	0.442	0.389	0.880	PASS	_		
Base top face - Flexural reinforceme	ent	in²/ft	0.442	0.356	0.807	PASS	-		
Base - Shear resistance		lb/ft	8940	3116	0.349	PASS			
Transverse stem reinforcement		in²/ft	0.884	0.389	0.440	PASS	_		
Potaining wall details			0.001	0.000	0.100	17,00			
Stem type			Cantilever						
Stem height			b = 5 625 ff	÷					
Stem thickness			t _{stom} = 18 in						
Angle to rear face of stem			$\alpha = 90 \text{ deg}$						
Stem density			a 55 dog						
			$\gamma_{\text{stem}} = 150 \text{ pc}$		Used only for desi	gn purposes v	vith		
					Tedds software. T	here is no hee	el or		
Dase unickness			ubase - 16.5 III						
Dase defisity			γ base - 150 pCl	-					
			$n_{\rm ret} - 5.025 \text{II}$		Conservative retained soil parameters for design purposes.				
Angle of soil surface			p – U deg <		0 1 1				
Depth of cover			u _{cover} = U Tt		Based on Sent 3	2020 Gentech	nical Memorandu		
Retained soil properties <					by Gannett Flem	ing (Geotech	Memo).		
Soil type			Dense fine or	silty sand					
Moist density			γ _{mr} = 120 pcf						
Saturated density			γ _{sr} = 120 pcf						
Base soil properties					-				
Soil type	_		Dense fine or	silty sand					
Soil density	\sim		γ₀ = 120 pcf		Not applicable.				
Gross allowable bearing pressure			Q _{allow_gross} = 40	00 psf					
Seismic details									
			K 0 472 <		Kh = 0.5*(PGAm)	= 0.5*(0.943),	from Geotech Me		
Horizontal seismic acceleration fact	or								
Horizontal seismic acceleration factor	or		$K_v = 0$		Kv = 0 (conservati	ve assumption	n)		

Tekla. Tedds	Project NHC/United Water - Freeman Diversion - 3BC					Job Ref. 067376		
Gannett Fleming	^{Section}				Sheet No./Rev.			
2251 Douglas Boulevard	Headwall Design (Culvert Spans)				3 / Rev.4			
Roseville, CA 95661	Date	Chk'd by	Date	App'd by	Date			
	7/11/2023	J. Allen	7/18/2023	T. Sell	8/11/2023			

Coefficient of friction to front of wall	K _® = 0.400	
Coefficient of friction beneath base	K _{fbb} – 0.400	
Active pressure coefficient	K _A = 0.292	from Geotech Memo.
Passive pressure coefficient	$\frac{1}{10000000000000000000000000000000000$	
Using Mononobe-Okabe theory		
Active dynamic pressure coefficient	K _{AE} = 0.754	
Passive dynamic pressure coefficient	KPE - 2.374	
Vser defined combination	/	
Load combination 1	$1 \times \text{Dead} + 1 \times \text{Live} + 1 \times \text{Lateral earth}$	
Sliding check		
Vertical forces on wall		
Wall stem	F _{stem} = A _{stem} × γ _{stem} = 1266 plf	
Wall base	$F_{base} = A_{base} \times \gamma_{base} = 1341 \text{ plf}$	
Surcharge load	F _{sur_v} = Surcharge _L × I _{heel} ≓∕1250 plf	
Moist retained soil	$F_{moist_v} = A_{moist} \times \gamma_{mr} = 3375 \text{ plf}$	
Total	F _{total_v} = F _{stem} + F _{base} + F _{sur_v} + F _{moist_v} = 7231 plf	
Horizontal forces on wall		
Surcharge load	$F_{sur_h} = K_A \times Surcharge_L \times h_{eff} = 511 \text{ plf}$	
Line loads	F _{P_h} = P _{D1} = 263 plf	
Moist retained soil	$F_{moist_h} = K_A \times \gamma_{mr} \times h_{eff}^2 / 2 = 858 \text{ plf}$	By inspection, headwall is
Total	F _{total_p} = F _{sur_h} + F _{P_h} + F _{moist_h} = 1632 plf	externally stable due to
Check stability against sliding		anchoring/
Base soil resistance	$F_{\text{exc}_h} = K_P \times \gamma_b \times (h_{\text{pass}} + h_{\text{base}})^2 / 2 = 269 \text{ plf}$	connection with the roof/top
Base friction	$\mathbf{F}_{\text{friction}} = \mathbf{F}_{\text{total}_{-V}} \times \mathbf{K}_{\text{fbb}} = 2893 \text{ plf}$	slab of culvert.
Resistance to sliding	F _{rest} = F _{exc_h} + F _{friction} = 3162 plf	
Factor of safety	FoS _{sl} = F _{rest} / F _{total_h} = 1.937 > 1.5	
	PASS - Factor of safety ag	gainst sliding is adequate
Overturning check		
Vertical forces on wall	\mathbf{X}	
Wall stem	$F_{stem} = A_{stem} \times \gamma_{stem} = 1266 \text{ plf}$	
Wall base	F_{base} = $A_{base} \times \gamma_{base}$ = 1341 plf	
Surcharge load	F _{sur_v} = Surcharge _L × t _{heel} = 1250 plf	
Moist retained soil	$F_{moist_v} = A_{moist} \times \gamma_{mr} = 3375 \text{ plf}$	
Total	F _{total_v} = F _{stem} + F _{base} + F _{sur_v} + F _{moist_v} = 7231 plf	
Horizontal forces on wall	\mathbf{X}	
Surcharge load	$F_{sur_h} = K_A \times Surcharge_L \times h_{eff} = 511$ plf	
Line loads	F _{P_h} = P _{D1} = 263 plf	
Moist retained soil	$F_{moist_h} = K_A \times \gamma_{mr} \times h_{eff}^2 / 2 = 858 \text{ plf}$	
Base soil	$F_{exc_h} = -K_P \times \gamma_b \times (h_{pass} + h_{base})^2 / 2 = -269 plf$	
Total	F _{total_h} = F _{sur_h} + F _{P_h} + F _{moist_h} + F _{exc_h} = 1363 pf	

Tekla. Tedds	Project NHC/United W	Job Ref. 067376				
Gannett Fleming	Section				Sheet No./Rev.	
2251 Douglas Boulevard	Headwall Design (Culvert Spans)				4 / Rev.4	
Suite 200 Calc. by Roseville, CA 95661 RC/SMU	Date	Chk'd by	Date	App'd by	Date	
	7/11/2023	J. Allen	7/18/2023	T. Sell	8/11/2023	

Overturning moments on wall Surcharge load Line loads Moist retained soil Total Restoring moments on wall Wall stem Wall base Moist retained soil

Base soil

Total

Check stability against overturning Factor of safety

Bearing pressure check

Vertical forces on wall Wall stem Wall base Surcharge load Moist retained soil Total Horizontal forces on wall Surcharge load Line loads Moist retained soil Base soil Total Moments on wall Wall stem Wall base Surcharge load Line loads Moist retained soi/

Base soil

Total

Check bearing pressure

Distance to reaction Eccentricity of reaction Loaded length of base Bearing pressure at toe Bearing pressure at heel
$$\begin{split} M_{sur_OT} &= F_{sur_h} \times x_{sur_h} = \textbf{1788} \text{ lb_ft/ft} \\ M_{P_OT} &= abs(P_{D1}) \times (p_1 + t_{base}) = \textbf{1101} \text{ lb_ft/ft} \\ M_{moist_OT} &= F_{moist_h} \times x_{moist_h} = \textbf{2003} \text{ lb_ft/ft} \\ M_{total_OT} &= M_{sur_OT} + M_{P_OT} + M_{moist_OT} = \textbf{4893} \text{ lb_ft/ft} \end{split}$$

$$\begin{split} M_{stem_R} &= F_{stem} \times x_{stem} = \textbf{949} \text{ lb}_ft/ft \\ M_{base_R} &= F_{base} \times x_{base} = \textbf{4357} \text{ /b}_ft/ft \\ M_{moist_R} &= F_{moist_v} \times x_{moist_v} = \textbf{13500} \text{ lb}_ft/ft \\ M_{exc_R} &= -F_{exc_h} \times x_{exc_h} = \textbf{123} \text{ lb}_ft/ft \\ M_{total_R} &= M_{stem_R} + M_{brise_R} + M_{moist_R} + M_{exc_R} = \textbf{18930} \text{ lb}_ft/ft \end{split}$$

FoS_{ot} = M_{total_R} / M_{total_OT} = 3.869 > 1.5 PASS - Factor of safety against overturning is adequate

 $F_{stem} \neq A_{stem} \times \gamma_{stem} = 1266 \text{ plf}$ $F_{base} = A_{base} \times \gamma_{base} = 1341 \text{ plf}$ $F_{sur_v} = \text{Surcharge}_L \times I_{heel} = 1250 \text{ plf}$ $F_{moist_v} = A_{moist} \times \gamma_{mr} = 3375 \text{ plf}$ $F_{total_v} = F_{stem} + F_{base} + F_{sur_v} + F_{moist_v} = 7231 \text{ plf}$ $F_{total_v} = V_{stem} + V_{$

$$\begin{split} F_{sur_h} &= K_A \times Surcharge_L \times h_{eff} = \textbf{511} \text{ plf} \\ F_{P_h} &= P_{D1} = \textbf{263} \text{ plf} \\ F_{moist_h} &= K_A \times \gamma_{mr} \times h_{eff}^2 / 2 = \textbf{858} \text{ plf} \\ F_{pass_h} &= -K_P \times \gamma \times (d_{cover} + h_{base})^2 / 2 = \textbf{-269} \text{ plf} \\ F_{total_h} &= \max(F_{sur_h} + F_{P_h} + F_{moist_h} + F_{pass_h} - F_{total_v} \times K_{fbb}, 0 \text{ plf}) = \textbf{0} \text{ plf} \end{split}$$

$$\begin{split} M_{stem} &= F_{stem} \times x_{stem} = \textbf{949} \ lb_ft/ft \\ M_{base} &= F_{base} \times x_{base} = \textbf{4357} \ lb_ft/ft \\ M_{sur} &= F_{sur_v} \times x_{sur_v} - F_{sur_h} \times x_{sur_h} = \textbf{3211} \ lb_ft/ft \\ M_P &= -(P_{D1} \times (p_1 + t_{base})) = -\textbf{1101} \ lb_ft/ft \\ M_{moist} &= F_{moist_v} \times x_{moist_v} - F_{moist_h} \times x_{hoist_h} = \textbf{11497} \ lb_ft/ft \\ M_{pass} &= -F_{pass_h} \times x_{pass_h} = \textbf{123} \ lb_ft/ft \\ M_{total} &= M_{stem} + M_{base} + M_{sur} + M_P + M_{moist} + M_{pass} = \textbf{19037} \ lb_ft/ft \end{split}$$

 $\overline{\mathbf{x}} = \mathbf{M}_{\text{total}} / \mathbf{F}_{\text{total}_v} = \mathbf{2.633} \text{ ft}$ $\mathbf{e} = \overline{\mathbf{x}} - \mathbf{I}_{\text{base}} / 2 = -\mathbf{0.617} \text{ ft}$ $\mathbf{I}_{\text{load}} = \mathbf{I}_{\text{base}} = \mathbf{6.5} \text{ ft}$ $\mathbf{q}_{\text{toe}} = \mathbf{F}_{\text{total}_v} / \mathbf{I}_{\text{base}} \times (1 - 6 \times \mathbf{e} / \mathbf{I}_{\text{base}}) = \mathbf{1747} \text{ psf}$ $\mathbf{q}_{\text{heel}} = \mathbf{F}_{\text{total}_v} / \mathbf{I}_{\text{base}} \times (1 + 6 \times \mathbf{e} / \mathbf{I}_{\text{base}}) = \mathbf{478} \text{ psf}$

Tekla Tedds	Project Job Ref. NHC/United Water - Freeman Diversion - 3BC 067376						
Gannett Fleming	Section				Sheet No.	/Rev.	
2251 Douglas Boulevard	Headwall De	esign (Culvert Sp	ans)		5 / Rev	v.4	
Suite 200 Roseville, CA 95661	Calc. by RC/SMU	Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/2023	
Allowable bearing capacity		$q_{allow} = q_{allow}$	_{gross} = 4000 psf		1		
Factor of safety		$FoS_{bp} = q_{allow}$	/ max(q _{toe} , q _{hee}	el) = 2.29			
	PASS	- Allowable bea	ring pressure	exceeds maxim	um applied	d bearing pressure	
User defined combination							
Load combination 2		$1 \times \text{Dead} + 1$	\times Live + 1 \times E	arthquake + 1 📈	ateral eart	h	
Sliding check							
Vertical forces on wall							
Wall stem		F _{stem} = A _{stem} :	×γ _{stem} = 1266 p	olf			
Wall base		F _{base} = A _{base}	×γ _{base} = 1341 p	olf		By increation	
Surcharge load		F _{sur_v} = Surcl	$harge_L \times I_{heel} = V$	1250 plf		headwall is	
Moist retained soil		$F_{moist_v} = A_{mo}$	_{ist} × γ _{mr} = 3375	plf		externally stable due to	
Total		F _{total_v} = F _{sterr}	+ F _{base} + F _{pur_v}	+ F _{moist_v} = 7231	plf	anchoring/	
Horizontal forces on wall						the roof/top	
Surcharge load		$F_{sur h} = K_A \times$	Surcharge _L × h	leff = 511 plf		slab of culvert.	
Line loads	\mathbf{A}	$F_{P h} = P_{D1} =$	263 plf				
Moist retained soil	$F_{\text{moist h}} = K_A \times \gamma_{\text{mr}} \times h_{\text{eff}}^2 / 2 = 858 \text{ plf}$						
Seismic	$F_{\text{seismic h}} = (K_{\text{AE}} - K_{\text{A}}) \times \gamma_{\text{mr}} \times (h_{\text{soil}} + h_{\text{base}})^2 / 2 = 1358 \text{ plf}$						
Total		F _{total_h} = F _{sur_}	h + FP_h + Fmoist	_h + F _{seismic_h} = 29 9	91 plf		
Check stability against sliding							
Base soil resistance		Fexc h = KPE >	$\langle \gamma_{\rm b} \times (h_{\rm pass} + h_{\rm b})$	_{pase}) ² / 2 = 269 plf			
Base friction		Friction = Ftotal	$v \times K_{\rm fbb} = 2893$	plf			
Resistance to sliding		Fres = Fexc h	+ F _{friction} = 3162	plf			
Factor of safety		FoSsl = Frest /	Ftotal_h = 1.057	< 1.1			
			FAIL - F	Factor of safety a	against sli	ding is inadequate	
Overturning check							
Vertical forces on wall							
Wall stem		F _{stem} = A _{stem}	× γ _{stem} = 1266 μ	olf			
Wall base		F _{base} = A _{base}	× γ _{base} + 1341 μ	olf			
Surcharge load		F _{sur v} = Surcl	hardel × heel = '	1250 plf			
Moist retained soil		$F_{\text{moist v}} = A_{\text{mo}}$	$_{ist} \times \gamma_{mr} = 3315$	plf			
Total		F _{total v} = F _{stem}	+ F _{base} + F _{sur}	+ F _{moist v} = 7231	plf		
Horizontal forces on wall		_	-				
Surcharge load		Fsur h = KA ×	Surcharde⊨ × h	leff = 511 plf			
Line loads		$F_{P,h} = P_{D1} =$	263 plf				
Moist retained soil		$F_{\text{moist }h} = K_A$	$\times \gamma_{\rm mr} \times h_{\rm eff}^2 / 2 =$	= 858 plf			
Base soil		$F_{exc h} = -K_{PE}$	· × γ _b × (h _{pass} + h	_{base}) ² / 2 = -269 p	lf		
Seismic		F _{seismic h} = (K	AE - KA) × γmr ×	$(h_{soil} + h_{base})^2 / 2 =$	= 1358 plf		
Total		$F_{total h} = F_{sur}$	h + F _{P h} + F _{moist}	_h + F _{exc h} + F _{seismi}	ch = 2721	plf	
Overturning moments on wall							
Surcharge load			h X Xeur h = 179	38 lb ft/ft			
ine loads		$M_{\rm P \ OT} = abe($		(a) = 1101 lb ft/ft			
		we_01 - abs(י ייע אין אין יינסא			•	

Tekla Tedds	Project NHC/United	HC/United Water - Freeman Diversion - 3BC 067				
Gannett Fleming 2251 Douglas Boulevard	Section Headwall De	esign (Culvert Sp	ans)		Sheet No.	/Rev. /.4
Suite 200 Roseville, CA 95661	Calc. by RC/SMU	Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/2023
Moist retained soil		M _{moist_OT} = F _r	noist_h $ imes$ Xmoist_h =	= 2003 lb_ft/ft /		
Seismic		M _{seismic_OT} = F	$-$ seismic_h $ imes$ Xseismi	_{ic_h} = 5705 lp_ft/ft		
Total		M _{total_OT} = M _s	ur_OT + MP_OT +	Mmoist_OT + Mseismic	_ot = 10598	₿ lb_ft/ft
Restoring moments on wall						
Wall stem		M _{stem R} = F _{ste}		lb f#ft		
Wall base		M _{base R} = F _{ba}	$_{\rm se} imes x_{\rm base} = 435$	7 / o ft/ft		
Moist retained soil		M _{moist R} = F _m	oist v × X _{moist v} =	13500 lb ft/ft		
Base soil		M _{exc R} = -F _{exc}	$h \times X_{exc} h = 12$	3 lb_ft/ft		
Total		_ M _{total_R} = M _{ste}	 m_R + Mbase_R +	_ M _{moist_R} + M _{exc_R} =	= 18930 lb_	_ft/ft
Check stability against overturn	ina					
Factor of safety		FoS _{ot} = M _{total}	_R / Nitotal_OT = 1	.786 > 1.1		
			PASS - Fac	tor of safety aga	inst overti	urning is adequa
Bearing pressure check			/			
Vertical forces on wall						
Wall stem		E	∽ v = 1266 r	lf		
Wall base		Fine And	$\sim \gamma \text{stem} - 1200 \text{ p}$	olf	By	/ inspection,
		E – Surel		1250 plf	ne ex	eadwall is (ternally
Moint rotained soil	\mathbf{A}			nlf	st	able due to
		$F_{\text{moist}_v} = F_{\text{stars}}$	$+ F_{1} + F_{2}$	рп + Елини = 7231		onnection with
Horizontal foress on well		T total_v - T stem	i ' i base ' i sur_v		P" th sla	e roof/top ab of culvert.
Surcharge load		E K. v	Surcharge, v h			
Line loads	\wedge	$F_{\text{sur}_h} = P_{\text{C4}} =$	263 nlf			
Moist retained soil		$F_n = F_{n-1}$	∠00 pn ∝v _{mr} x h _{off} ² / 2 =	= 858 plf		
Base soil			× vh × (deever + h	- 000 pii _{2haaa}) ² / 2 = -269 r	lf	
Seismic		$F_{axiamia} = (K_{axiamia})$	$\lambda = - \mathbf{K}_{\lambda} \times \mathcal{V}_{mr} \times$	$(h_{acil} + h_{baca})^2 / 2 =$	- 1358 nlf	
Total	/	Ftetel = max	(Eaur h + En h +	$F_{\text{moint}} + F_{\text{mons}} + +$	Fasiamia h - F	Fratal v X Kash 0 nlf
Total		0 plf		T moist_n · T pass_n ·		
Moments on wall						
Wall stem		M _{stom} = F _{stom}	× x _{stom} = 949 lb	ft/ft		
Wall base		Massa = Fhasa	\times x _{base} = 4357	lb_ft/ft		
Surcharge load		Mour = Four w		x _{our b} = 3211 lb f	t/ft	
Line loads		$M_{\rm P} = -(P_{\rm D4} \vee$	$(D_1 + f_{1}) = -$	1101 lb ft/ft	.,	
Moist retained sol		$M_{\text{restart}} = F_{\text{restart}}$		$\frac{1}{10} \frac{1}{10} \frac$	497 lb ft/ft	
Base soil				$\cos(n \wedge moist_h - 1)$	יישר ועונ	
Seismic		Mericanic = -F	iamia h X Y at at a	s = -5705 lb ft/ft		
Total		$M_{\text{total}} = M_{\text{sterm}}$	+ Mbase + Meur +	$+ M_{P} + M_{moiet} + M_{r}$	ass + Meairmi	a = 13332 lb_ft/ft
Chock boaring prossure			buse · Ivisul			
Distance to reaction		<u>v</u> – N <i>I</i> / E		\mathbf{N}		
Econtricity of reaction			ιοιαι_v - ι.ο44 ΙΙ / 2 = .1 ΛΩΕ #			
			- 5 521 ft			
			- 0.001 IL	- nof		
Bearing pressure at toe		$q_{toe} = 2 \times F_{tot}$	al_v / Iload = 261	5 pst		

Tekla. Tedds	NHC/United	Water - Freema	n Diversion - 3B	C	Job Ref. 067376	
Gannett Fleming 2251 Douglas Boulevard	Section Headwall De	esian (Culvert Sp	ans)		Sheet No./Re 7 / Rev.4	v.
Suite 200 Roseville, CA 95661	Calc. by	Date	Chk'd by	Date	App'd by Date	
	RC/SWD	1/11/2025	J. Allen	1/10/2023		0/11/202
Bearing pressure at heel		q _{heel} = 0 psf	1000 (By ir stab	nspection, head le due to ancho	wall is externa
Allowable bearing capacity		$q_{allow} = q_{allow}$	_{gross} = 4000 pst	with	the roof/top sla	b of culvert.
racior of salety	PASS	- Allowable bea	ring pressure e	exceeds maxim	um applied b	earing pres
HEADWALL DESIGN (CULVERT	SPANS)		In conformance	e with USACE		
Retaining wall design in accord	ance with AC	I 318-19 <	EM 1110-2-210 – 2016), Sections Additional infor	04 (Nov. s 2 and 3. mation	Tedds cald	culation version 2
Concrete details			provided, wher	e applicable.		
Compressive strength of concrete		f' _c = 4500 ps	i			
Concrete type		Normal weig	ht			
Reinforcement details						
Yield strength of reinforcement		f _y = 60000 ps	si			
Modulus of elasticity or reinforcem	ent	E _s = 290000	0 0 psi			
Compression-controlled strain limi	t	ε _{ty} = 0.002	In conform 2016), Tab	ance with USACE le 2-1, for "formed	EM 1110-2-210 and screeded s	4 (Nov. surfaces
Cover to reinforcement <		• ·	such as sti channel lin	lling basin walls, cł ing slabs on grade	nute spillway sla : greater than 1	abs, and 2 in.
Front face of stem		c _{sf} = 3 in	and less th	an 24 in. thick".	. <u>.</u>	
Rear face of stem		$C_{sr} = 3$ in				
Top face of base		$c_{bt} = 3 \ln \alpha$				
Bollom face of base	In conform	с _{ьь} = з in nance with USACE	EM 1110-2-2104	(Nov. 2016), Table	e 3-1. Loads wit	h "f" are consi
User defined load combinations	"favorable	e" conditions by Teo	ds, but calculatio	ns below only use	"unfavorable" (r	non-"f") loads.
Load combination no.1		2.2D + 1Df +	2.2L + 1Lf + 2.		- Static Cas	e
Load combination no.2		2.2D + 1Df +	2.2L + 1Lt + 2.3		4116	
Load combination no.3		1.2D + 1Df +	1L + 1Lf + 1.25	DE + 1Ef + 1.5H -		Seismic Case
Load combination no.4		1.2D + 1Df +	1L + 1Lf + 1.25)E + 1EI + 1.5H -	+ 1 HT 🗲	
pading details - Combination No.1 - kips/ft ²	Shear force - 0	Combination No.1 - kips/ft		Bending moment - Combir	nation No.1 - kips_ft/ft	
0.16						
0.58						
2		2.4		-9.1		
26 ZA						
		-2.7		6.5		

Tekla Tedds	Project NHC/United W	Job Ref. 067376				
Gannett Fleming 2251 Douglas Boulevard	Section Headwall Design (Culvert Spans)				Sheet No./Rev. 9 / Rev.4	
Suite 200 Roseville, CA 95661 RC/SMU	Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/2023	

Check stem design at base of stem					
Depth of section	h = 18 in				
Rectangular section in flexure - Section 22.3					
Design bending moment combination 4	M = 8508 lb_ft/ft				
Depth of tension reinforcement	d = h - c_{sr} - ϕ_{sr} / 2 = 14	4.625 in			
Compression reinforcement provided	No.6 bars @ 12" c/c				
Area of compression reinforcement provided	$A_{sf.prov}$ = $\pi imes \phi_{sf}^2$ / (4 $ imes$	s _{sf}) = 0.442 in²/ft			
Tension reinforcement provided	No.6 bars @ 12" c/c				
Area of tension reinforcement provided	$A_{sr.prov}$ = $\pi imes \phi_{sr}^2$ / (4 $ imes$	s _{sr}) = 0.442 in²/ft			
Maximum reinforcement spacing - cl.7.7.2.3	$s_{max} = min(18 in, 3 \times 10^{-1})$	h) = 18 in			
		PASS - Reinforcement is adequately spaced			
Depth of compression block	a = $A_{sr.prov} \times f_y / (0.85)$	× f'c) = 0.577 in			
Neutral axis factor - cl.22.2.2.4.3	β_1 = min(max(0.85 - 0.05 × (f'_c - 4 ksi) / 1 ksi, 0.65), 0.85) = 0.825				
Depth to neutral axis	c = a / β ₁ = 0.7 in				
Strain in reinforcement	ϵ_t = 0.003 × (d - c) / c	= 0.059679			
		Section is in the tension controlled zone			
Strength reduction factor	$\phi_f = \min(\max(0.65 + 0.65))$	$0.25 \times (\epsilon_t - \epsilon_{ty}) / 0.003, 0.65), 0.9) = 0.9$			
Nominal flexural strength	$M_n = A_{sr.prov} \times f_y \times (d -$	a / 2) = 31668 lb_ft/ft			
Design flexural strength	$\phi M_n = \phi_f \times M_n = 2850^{\circ}$	l lb_ft/ft			
	M / φM _n = 0.299				
	PASS - Design fl	exural strength exceeds factored bending moment			
By iteration, reinforcement required by analysis	A _{sr.des} = 0.13 in ² /ft				
Minimum area of reinforcement - cl.7.6.1.1	$A_{sr.min}$ = 0.0018 \times h =	0.389 in²/ft <			
PASS - Area of reinforc	ement provided is gre	eater than minimum area of reinforcement required			
Rectangular section in shear - Section 22.5		USACE EM 1110-2-2104 (Nov. 2016), Section 2.9			
Design shear force	V = 3083 lb/ft	requires 0.003 instead of 0.0018. As min = $0.003^{++}(12 \text{ in/ft}) = 0.648 \text{ in}^2/\text{ft}$ (both faces)			
Concrete modification factor - cl.19.2.4	$\lambda = 1$	$As_min < As_prov = (0.442+0.442) in^2/ft (both faces)$			

Tekla Tedds	Project NHC/United V	Vater - Freemar	n Diversion - 3E	BC	Job Ref. 067376				
Gannett Fleming 2251 Douglas Boulevard	Section Headwall Des	ign (Culvert Spa	ans)		Sheet No./Re 10 / Rev.4	v. F			
Suite 200	Calc by	Date	Chk'd by	Date	App'd by	Date			
Roseville, CA 95661	RC/SMU	Click by Date Apple by RC/SMU 7/11/2023 J. Allen 7/18/2023 T. Sell							
Depth of tension reinforcement		d = 14.63 in							
Size effect modification factor - cl.	22.5.5.1.3	$\lambda_{s} = \min(\sqrt{2})$	/ (1 + (d / 1 in)	/ 10)), 1.0) = 0.90)1				
Reinforcement ratio		ρ = A _{sr.prov} / d	= 0.003						
Nominal concrete shear strength -	eqn.22.5.5.1	$V_c = min(8 \times 1)$	$\lambda_s \times \lambda \times \rho^{1/3}$, 5	$ imes \lambda$) $ imes \sqrt{f_c \times 1}$ p	si) × d= 1154	× d= 11546 lb/ft			
Strength reduction factor		$\phi_{s} = 0.75$							
Design concrete shear strength - c	1.7.6.3.1	$\phi V_c = \phi_s \times V_c$	= 8660 lb/ft						
		V / ∲Vc = 0.35	56						
				PASS - No she	ear reinforce	ment is required			
Horizontal reinforcement paralle	I to face of ste	m							
Minimum area of reinforcement - c	1.7.6.1.1	A _{sx.reg} = 0.001	18 × t _{stem} = 0.38	39 in²/ft ←					
Transverse reinforcement provideo	d	No.6 bars @	12" c/c each fa	ace					
Area of transverse reinforcement r	provided	$A_{sx,prov} = 2 \times 1$	$ au imes \phi_{sx}^2$ / (4 $ imes$ s	_{ex}) = 0.884 in²/ft					
	PASS - Area	of reinforceme	nt provided is	greater than ar	ea of reinfor	cement required			
Check base design at heel				- 0.000*h*(4.0 in					
Depth of section		h = 16.5 in	As_n Note	that t_stem = $h = 1$	1/π) = 0.648 m²2 8 in.	z/it (both faces)			
Postangular soction in flowuro	Saction 22.3		As_n	nin < As_prov = 0.8	84 in^2/ft (both	faces)			
Design bending moment combinat	ion A	M = 11211 lb	ft/ft						
Design bending moment combinat	1011 4	$d = b - c_{W} - b_{W}$	_1011 / 2 = 13 125 i	n					
Compression reinforcement provid	led	$d = f + c_{B} + \phi_{C}$	12" c/c						
Area of compression reinforcemen	it provided	Abb prov = $\pi \times \phi_{\text{tb}}^2 / (4 \times \text{Sbb}) = 0.442 \text{ in}^2/\text{ft}$							
Tension reinforcement provided	it provided	No 6 bars @	12" c/c	0.442 /					
Area of tension reinforcement prov	vided	Abt prov = $\pi \times d$	$(4 \times s_{bt}) = 0$	0.442 in²/ft					
Maximum reinforcement spacing -	cl 7 7 2 3	$s_{max} = min(18)$	(1×0.00)	tin					
	01111.2.0			PASS - Reinford	ement is add	equately spaced			
Depth of compression block		$a = A_{bt, prov} \times f_{v}$	v / (0.85 × f'c) =	0.577 in		,,			
Neutral axis factor - cl.22.2.2.4.3		$\beta_1 = \min(\max(0.85 - 0.05 \times (f_c - 4 \text{ ksi}) / 1 \text{ ksi}, 0.65), 0.85) = 0.825$							
Depth to neutral axis		$c = a / \beta_1 = 0.7$ in							
Strain in reinforcement		$\epsilon_t = 0.003 \times (d - c) / c = 0.05325$							
			,,	Section is ir	n the tension	controlled zone			
Strength reduction factor		or = min(max	(0.65 + 0.25 ×(εt - εty) / 0.003. 0.	65). 0.9) = 0. 9)			
Nominal flexural strength		$M_{\rm p} = A_{\rm bt srav} \times f_{\rm b} \times (d - a / 2) = 28354 \text{ lb ft/ft}$							
Design flexural strength		$\phi M_n = \phi_f \times M_n$	= 25519 lb ft/i	ft					
		$M / \phi M_p = 0.4$.39						
		PASS - D	 esian flexural	strenath excee	ds factored b	endina moment			
By iteration, reinforcement require	d by analysis	A _{bt.des} = 0.192	2 in²/ft	Ū		5			
Minimum area of reinforcement - c	1.7.6.1.1	$A_{bt.min} = 0.001$	18×h = 0.356	in²/ft ≺	_				
PASS - A	Area of reinford	ement provide	ed is greater tl	han minimum ar	ea of reinfor	cement required			
Rectangular section in shear - S	ection 22.5		Ab b	oin - 0.002*b*(12 in	(ft) = 0.504 in 0	P/ft (both force)			
Design shear force		V = 3116 lb/f	t Ab_n	mn = 0.003 m (12 m) min < Ab_prov = (0.4	442+0.442) in 2	2/ft (both faces)			
Concrete modification factor - cl.19	9.2.4	λ = 1							
Depth of tension reinforcement		d = 13.13 in							
Size effect modification factor - cl.	22.5.5.1.3	$\lambda_{\rm s} = \min(\sqrt{2})$	/ (1 + (d / 1 in)	/ 10)), 1.0) = 0.9 3	3				
		x · x - ·		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

Tekla Tedds	Project NHC/United W	ater - Freemar	Job Ref. 067376				
Gannett Fleming 2251 Douglas Boulevard	Section Headwall Desig	gn (Culvert Spa	ans)		Sheet No./Re 11 / Rev.4	Sheet No./Rev. 11 / Rev.4	
Suite 200 Roseville, CA 95661	Calc. by RC/SMU	Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/2023	
Reinforcement ratio Nominal concrete shear strength - Strength reduction factor Design concrete shear strength - c	eqn.22.5.5.1 .7.6.3.1	$\rho = A_{bt,prov} / d$ $V_c = min(8 \times \phi_s = 0.75$ $\phi V_c = \phi_s \times V_c$ $V / \phi V_c = 0.34$	= 0.003 $\lambda \times \rho^{1/3}$, 5 $\times \lambda$) = 8940 lb/ft 49	×√(f'c×1 psi)×c	d= 11920 lb/ft		
Transverse reinforcement paralle Minimum area of reinforcement - cl Transverse reinforcement provided Area of transverse reinforcement p	e l to base .7.6.1.1 rovided PASS - Area c	A _{bx.req} = 0.00 No.6 bars @ A _{bx.prov} = 2 × 2 of reinforceme	$18 \times t_{base} = 0.31$ $12" c/c each fan \pi \times \phi_{bx}^2 / (4 \times s_{bent})$	ar reinforcei ea <mark>of reinforce</mark>	nent is required cement required		
			Ab_n Note	nin = 0.003*h*(12 in that t_base = h = 1 nin < Ab_prov = 0.8	/ft) = 0.594 in^2 6.5 in. 84 in^2/ft (both	2/ft (both faces)	
Note that t_base = h = 16.5 in. Ab_min < Ab_prov = 0.884 in/2/it (both faces)							

IEKIa IEQUS	NHC/United	d Wate	Vater - Freeman Diversion - 3BC				67376	
2251 Douglas Boulevard	Gannett Fleming Section 2251 Douglas Boulevard Cross Channel				Boxes (8 FT)			
Roseville, CA 95661 Calc.		Da 7/	^{ate} /11/2023	Chk'd by J. Allen	Date 7/18/2023		op'd by Sell	Date 8/11/20
<u>CROSS CHANNEL BOXES (8 FT)</u> Calculation is based on user defir <u>Analysis summary</u>	ned combin	nation	values Ove ove exp	erall design Ids software rall structura Janations pr	summary provi does not acco al system. Desi rovided in resul	ded by unt for ign ts.	Tedds o	calculation version
Design summary 🖌								
Overall design utilisation		3	.67					By inspection,
Overall design status		F					•	cross channel
Description	U	nit F	Capacity	Applied	F o S	Resu	ilt	due to box
Overturning stability		ft/ft	30947	23126	1.338	PAS	5	design/layout
Bearing pressure	pe	f	4000	928	4.310	PAS	<u> </u>	overall system
Design summary								and existing cl
Description	U	nit	Provided	Require	d Utilisat	ion Resu	ılt	
Stem p0 rear face - Flexural reinforc	ement in	²/ft	0.802	0.620	0.773	PAS	S	
Stem p0 - Shear resistance	lb/	/ft	8203	6185	0.754	PAS	S	
Base bottom face - Flexural reinforcement		<u>~/ft</u> / ft	0.802	0.785	0.979	PAS	5	
Transverse stem reinforcement in		<u>²/ft</u>	0.614	0.259	0.301	PAS	S	
Transverse base reinforcement	in ²	²/ft	0.614	0.259	0.422	PAS	S	
Stem height Stem thickness Angle to rear face of stem Stem density Toe length Base thickness Base density Height of retained soil Angle of soil surface Depth of cover Retained soil properties Soil type Moist density			$\begin{array}{l} n_{stem} = 8 \ \text{ft} \\ t_{stem} = 12 \ \text{in} \\ \alpha = 90 \ \text{deg} \\ \gamma_{stem} = 150 \ \text{pcf} \\ l_{toe} = 13 \ \text{ft} \leftarrow \\ t_{base} = 12 \ \text{in} \\ \gamma_{base} = 150 \ \text{pcf} \\ h_{ret} = 8 \ \text{ft} \leftarrow \\ \beta = 0 \ \text{deg} \leftarrow \\ d_{cover} = 0 \ \text{ft} \\ \end{array}$			Used for design purposes only with Tedds software to avoid software errors. onservative retained soil parameters for esign purposes. Based on Sept. 2020 Geotechnical Memorandun		
Saturated density Base soil properties Soil type		γ₅ D	ense fine or	silty sand	by Gannett F	Ieming (Geot	ech Mei	mo).
Soil density Gross allowable bearing pressure		γt a	γ _b = 120 pcf q _{allow gross} = 4000 psf <−−−−			Based on Geotech Memo for seismic		
Seismic details					loading	plus all other	ioads.	
Horizontal seismic acceleration factor	or	к к	C _h = 0.472 ←	>	Kh = 0.5*(PG) Kv = 0 (conse	Am) = 0.5*(0.9 rvative assun	943), fro nption)	om Geotech Me

Tekla Tedds	Ia Tedds Project Job Ref. NHC/United Water - Freeman Diversion - 3BC 067376										
Gannett Fleming	Section		Sheet No./Rev.								
2251 Douglas Boulevard	Cross Channe	el Boxes (8 FT)			3 / Rev.0						
Suite 200 Roseville, CA 95661	Calc. by RC/SMU	Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/2023					
Passive pressure coefficient Kp - 2.375											
Using Mononobe-Okabe theory											
Active dynamic pressure coefficient $K_{AE} = 0.754$											
Passive dynamic pressure coefficient											
Ver defined combination					1						
Load combination 1		$1 \times \text{Dead} + 1$	\times Live + 1 \times La	ateral earth							
Sliding check											
			- 1 200 p	IF							
	Wall stem			$F_{stem} = A_{stem} \times \gamma_{stem} = 1200 \text{ pir}$							
Tetal	Wall base			nif.							
Total		Ftotal_v = Fstem	+ Fbase = 3300	рп							
Horizontal forces on wall											
Surcharge load	$F_{sur_h} = K_0 \times Surcharge_L \times h_{eff} = 938 plf$										
Line loads	$F_{P_h} = P_{D1} = 376 \text{ plf}$										
Moist retained soil	$F_{\text{moist}_h} = K_0 \times \gamma_{\text{mr}} \times h_{\text{ff}}^{\text{ff}} / 2 = 2027 \text{ plf} \qquad \text{is externally stable} \\ \text{due to box}$										
lotal		$F_{total_h} = F_{sur_l}$	$h + Fr_h + Fmoist_h$	_. _h = 3341 plf	design/layo	ut and					
Check stability against sliding	\mathbf{N}				overall syst	em					
Base soil resistance	$F_{exc_h} = K_P \gamma_b \times (h_{pass} + h_{base})^2 / 2 = 143 \text{ plf}$ and existing cross channel.										
Base friction	$F_{\text{friction}} = F_{\text{total}_v} \times K_{\text{fbb}} = 1320 \text{ plf}$										
Resistance to sliding	$F_{rest} = F_{exc_h} + F_{friction} = 1462 \text{ plf}$										
Factor of safety	Factor of safety $FoSt = F_{rest} / F_{total_h} = 0.438 < 1.5$										
			FAIL - F	factor of safety a	igainst sliding	is inadequate					
Overturning check		Ň.									
Vertical forces on wall		\mathbf{X}									
Wall stem	$F_{stem} = A_{stem} \times \gamma_{stem} = 1200 \text{ plf}$										
Wall base	$F_{base} = A_{base} imes \gamma_{base} = 2100 \text{ plf}$										
Total		F _{total_v} = F _{stem}	+ F _{base} = 3300	plf							
Horizontal forces on wall			\mathbf{i}								
Surcharge load		$F_{sur_h} = K_0 \times S_0$	Surcharge∟ × h₀	_{eff} = 938 plf							
Line loads	Line loads			F _{P_h} = P _{D1} = 376 plf							
Moist retained soil	Moist retained soil			$F_{\text{moist_h}} = K_0 \times \gamma_{\text{mr}} \times h_{\text{eff}} \sqrt{2} = 2027 \text{ plf}$							
Base soil	$F_{exc_h} = -K_P \times \gamma_b \times (h_{pass} + h_{base})^2 / 2 = -143 \text{ plf}$										
Total	F _{total_h} = F _{sur_h} + F _{P_h} + F _{moist_} + F _{exc_h} = 3198 plf										
Overturning moments on wall				\mathbf{X}							
Surcharge load		$M_{sur_OT} = F_{sur_h} \times x_{sur_h} = 4222 \text{ Ib_ft} \text{At}$									
Line loads	M _{P_OT} = abs(P _{D1}) × (p ₁ + t _{base}) = 1880 b_ft/ft										
Moist retained soil	$M_{\text{moist}_{OT}} = F_{\text{moist}_h} \times x_{\text{moist}_h} = 6080 \text{ lb}_ft/ft$										
Total		$M_{total_{OT}} = M_{st}$	ur_OT + M _{P_OT} + N	M _{moist_OT} = 12182	lb_ft/ft						
Restoring moments on wall											
Wall stem		M _{stem R} = F _{ste}	m × X _{stem} = 1620	00 lb_ft/ft	\mathbf{X}						
Vall base	all base $M_{\text{base }R} = F_{\text{base}} \times x_{\text{base}} = 14700 \text{ lb ft/ft}$										
/				—	<u> </u>						
Tekla Tedds	Project Job Ref. NHC/United Water - Freeman Diversion - 3BC 067376										
--	---	--	--	---	---------------------	-----------------------------	--	--	--	--	--
Gannett Fleming	Section Sheet No./Rev.										
2251 Douglas Boulevard	Cross Channel	Boxes (8 FT)			4 / Rev.0						
Suite 200 Roseville, CA 95661	Calc. by BC/SMU	Date 7/11/2023	Chk'd by	Date 7/18/2023	App'd by	Date 8/11/2023					
		1/11/2020	0.741011	1110/2020	1.00	0,11,2020					
Base soil		M _{exc_R} = -F _{exc_h}	n × x _{exc_h} = 47 lb	_ft/ft	1						
Total $M_{\text{total}_R} = M_{\text{stem}_R} + M_{\text{base}_R} + M_{\text{exc}_R} = 30947 \text{ lb}$											
Check stability against overturni	ng										
Factor of safety		FoS _{ot} = M _{total_R} / M _{total_OT} = 2.54 > 1.5									
\mathbf{X}			PASS - Facto	r of safety aga	nst overturnir	ng is adequate					
Bearing pressure check											
Vertical forces on wall											
Wall stem		$F_{stem} = A_{stem} \times F_{stem}$	γ _{stem} = 1200 plf		By insp	ection,					
Wall base		$F_{\text{base}} = A_{\text{base}} \times f_{\text{base}}$	γ _{base} = 2100 plf		cross c is exter	hannel wall nally stable					
Total		F _{total_v} = F _{stem} +	• F _{base} = 3300 p	If	due to	box					
Horizontal forces on wall					connec	tions with					
Surcharge load		$F_{sur_h} = K_0 \times Su$	urcharge∟ h _{eff}	= 938 plf	overall and exi	system sting cross					
Line loads	Line loads			$F_{P_h} = P_{D1} = 376 \text{ plf}$ channel.							
Moist retained soil	Moist retained soil			$F_{\text{moist}_h} = K_0 \times \gamma_{\text{mr}} \times p_{\text{eff}}^2 / 2 = 2027 \text{ plf}$							
Base soil	$F_{pass_h} = -K_P \times \gamma_b \times (d_{cover} + h_{base})^2 / 2 = -143 \text{ plf}$										
Total	F _{total_h} = F _{sur_h} + F _{P_h} + F _{moist_h} + F _{pass_h} - F _{total_v} × K _{fbb} = 1878 plf										
Moments on wall	\mathbf{X}										
Wall stem		$M_{stem} = F_{stem} \times$	x _{stem} = 16200	o_ft/ft							
Wall base	M _{base} = F _{base} ×	x _{base} = 14700	o_ft/ft								
Surcharge load	$M_{ser} = -F_{sur_h} \times X_{sur_h} = -4222 \text{ lb_ft/ft}$										
Line loads $M_{P} = -(P_{D1} \times (p_{1} + t_{base})) = -1880 \text{ lb_ft/ft}$											
Moist retained soil $M_{moist} = -F_{moist_h} \times x_{moist_h} = -6080 \text{ lb_ft/ft}$											
Base soil	$M_{pass} = -F_{pass_h} \times x_{pass_h} = 47 \text{ Ib_ft/ft}$										
Total M _{tota} = M _{stem} + M _{base} + M _{sur} + M _P + M _{moist} + M _{pass} = 18766 lb_ft/ft						t/ft					
Check bearing pressure											
Distance to reaction		x = M _{total} / F _{tot}	_{al_v} = 5.687 ft								
Eccentricity of reaction		$e = \overline{x} - I_{base}/2$	2 = -1.313 ft								
Loaded length of base	$I_{load} = I_{base} = 14$ ft										
Bearing pressure at toe	Bearing pressure at toe $q_{toe} = F_{total_v} / I_{base} \times (1 - 6 \times e / I_{base}) = 368 \text{ psf}$										
Bearing pressure at heel	Bearing pressure at heel $q_{heel} = F_{total_v} / I_{base} (1 + 6 \times e / I_{base}) = 103 \text{ psf}$										
Allowable bearing capacity	Allowable bearing capacity $q_{allow} = q_{allow_{gross}} = 4000 \text{ psf}$										
Factor of safety		FoS _{bp} = q _{allow} /	max(q _{toe} , q _{heel})	= 10.858	m on liad bo						
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure											
User defined combination											
Load combination 2	Load combination 2 1 × Dead + 1 × Live + 1 × Earthquake + 1 × Lateral earth										
Sliding check				\mathbf{h}							
Vertical forces on wall		_									
Wall stem	Wall stem $F_{stem} = A_{stem} \times \gamma_{stem} = 1200 \text{ plf}$										
Wall base $F_{base} = A_{base} \times \gamma_{base} = 2100 \text{ plf}$											
Total		F _{total_v} = F _{stem} +	• F _{base} = 3300 p	lt	N						

Tekla Tedds	Project Job Ref. NHC/United Water - Freeman Diversion - 3BC 067376						
Gannett Fleming 2251 Douglas Boulevard	Section Cross Chann	el Boxes (8 FT)		Sheet No./Rev. 5 / Rev.0			
Suite 200 Roseville, CA 95661	Calc. by RC/SMU	Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/2023	
Horizontal forces on wall					/		
Surcharge load $F_{sur_h} = K_0 \times Surcharge_L \times h_{eff} = 938 \text{ plf}$							
Line loads		$F_{P_h} = P_{D1} = 3$	376 plf				
Moist retained soil		$F_{\text{moist}_h} = K_0 \times \gamma_{\text{mr}} \times h_{\text{eff}}^2 / 2 = 2027 \text{ plf}$					
Seismic		$F_{\text{seismic h}} = K_0 \times \gamma_{\text{mr}} \times (h_{\text{soil}} + h_{\text{base}})^2 / 2 = 2027 \text{ p}^4$					
Total		F _{total_h} = F _{sur_l}	h + FP_h + Fmoist	_h + Fseismic_h = 536	67 plf		
Check stability against sliding							
Base soil resistance		Fexc h = KPE >	$\langle v_{\rm b} \times (h_{\rm pass} + h_{\rm b})$	$(ase)^2 / 2 = 142$ plf			
Base friction		$F_{\text{friction}} = F_{\text{total}}$	$v \times K_{\rm fbb} = 1320$	nlf			
Resistance to sliding		$F_{rest} = F_{exc} h$	+ $F_{\text{friction}} = 1462$	plf			
Factor of safety		$FoS_{sl} = F_{rest}/$	$F_{\text{total b}} = 0.272$	\$1.1			
			FAIL - J	actor of safety a	against sliding	is inadequate	
Overturning check					5 5		
Vertical forces on wall		- •	1000	16			
Wall stem	F _{stem} = A _{stem} >	$\times \gamma_{\text{sten}} = 1200 \text{ p}$	DIT	By inspection, cross channel wall			
	$F_{base} = A_{base}$	$F_{\text{base}} = A_{\text{base}} \times \gamma_{\text{base}} = 2100 \text{ pl}$			is externally stable		
lotal	\mathbf{X}	F _{total_v} = F _{stem}	+ F _{base} = 3300	plf	due to b design/la	ox ayout and	
Horizontal forces on wall					connecti	ons with	
Surcharge load		$F_{sur_h} = K_0 \times S_{sur_h}$	Surcharge∟×h	_{eff} = 938 plf	and exis	ting cross	
Line loads		$F_{P_h} = P_{D1} = 3$	376 plf		channel.		
Moist retained soil		$F_{\text{hoist}_h} = K_0 >$	$\langle \gamma_{mr} \times h_{eff}^2 / 2 =$	2027 plf			
Base soil	F_{exc_h} = -K _{PE} × γ_b × (h _{pass} + h _{base}) ² / 2 = -142 plf						
Seismic	c $F_{\text{seismic}_h} = K_0 \times \gamma_{\text{mr}} \times (h_{\text{soil}} + h_{\text{base}})^2 / 2 = 2027 \text{ plf}$						
Total		Ftotath = Fsur_h + FP_h + Fmoist_h + Fexc_h + Fseismic_h = 5225 plf					
Overturning moments on wall							
Surcharge load		Msur ot = Fsur	h × Xsur h = 422	2 lb_ft/ft			
Line loads		M _{P OT} = abs	$P_{D1}) \times (p_1 + t_{bas})$	₀) = 1880 lb_ft/ft			
Moist retained soil	/	M _{moist} OT = F	noist h \times Xmoist h =	6080 lb_ft/ft			
Seismic	,	M _{seismic} ot = F	seismic h X Xseismi	_{c h} = 10944 lb ft/f	t		
Total		M _{total OT} = M _{st}		Mmoist OT + Mseismic	от = 23126 lb т	ft/ft	
Restoring moments on wall							
Wall stem		Mstem R = Fata	$m \times X_{stem} = 1620$	00 lb_ft/ft			
Wall base		$VI_{\text{stem}} = \Gamma_{\text{stem}} \times X_{\text{stem}} = \Gamma_{2} UU \text{ ID}_{1} U/\text{IL}$ $M_{\text{stem}} = \Gamma_{\text{stem}} \times X_{\text{stem}} = 14200 \text{ Ib} \text{ ff/ff}$					
Base soil		$\frac{1}{100} \frac{1}{100} \frac{1}$					
Total		$M_{\text{total } P} = M_{\text{eto}}$	$m R + M_{have R} + $	$M_{\rm exc R} = 30947$ lb	ft/ft		
Chock stability against avart	ina		i · · · · · · · · · · · · · · · · · · ·				
Eactor of safety	ing	$F_0S_{-1} = M_{0}$	p / M = 1	338 > 1			
		i OOot - ivitotal	PASS - Fac	tor of safety ana	inst overturnii	na is adequate	
Beering areas at a st			, , , , , , , , , , , , , , , , , , ,	ugu			
Bearing pressure check				\sim			
Vertical forces on wall							
Wall stem		F _{stem} = A _{stem} >	× γ _{stem} = 1200 p	olf	\mathbf{N}		
·					-		

Tekla. Tedds	Project NHC/United	Water - Freema	BC	Job Ref. 067376						
Gannett Fleming 2251 Douglas Boulevard	Section Cross Chan	nel Boxes (8 FT)	Sheet No./Rev. 6 / Rev.0							
Suite 200 Roseville, CA 95661	Calc. by RC/SMU	Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/2023				
Wall base		F _{base} = A _{base} :	× γ _{base} = 2100 β	olf	/					
Total	F _{total_v} = F _{stem}	F _{total_v} = F _{stem} + F _{base} = 3300 plf								
Horizontal forces on wall										
Surchargeload		$F_{sur h} = K_0 \times S_0$	F _{sur h} = K₀ × Surcharge _L × h _{eff} = 938 plf							
Line loads		$F_{P h} = P_{D1} = 1$	376 plf							
Moist retained sol		$F_{\text{moist h}} = K_0 >$	$F_{\text{moist }h} = K_0 \times \gamma_{\text{mr}} \times h_{\text{eff}}^2 / 2 = 2027 \text{ nlf}$							
Base soil		Fnass h = -Kp	$\times v_{\rm b} \times (d_{\rm obver} + 1)$	$(1)_{\text{base}}^2 / 2 = -143 \text{ p}$	lf					
Seismic		$F_{\text{resistive}} = K_0$	$\frac{1}{1} pass_n = -rv + x p + (ugaver + 1)base_r / 2 = -143 pil$							
Total						Kar - 2005 plf				
Total		Ftotal_h - Fsur_	h + FP_h + Fmoist	_h ⊤ Fpass_h ⊤ Fseisn	nic_h = Ftotal_v ×	rtbb - 3905 pil				
Moments on wall										
Wall stem	\mathbf{X}	Mstem - Fstem	× x _{stem} = 16200	lb_ft/ft	By inspection, cross channel wall is externally stable					
Wall base		M _{base} = F _{base}	× x _{base} = 14700	lb_ft/ft						
Surcharge load	Msur = -Fsur_h	× x _{sur_h} = -4222	due to box design/layout and							
Line loads		M P = -(P D1 ×	$(p_1 + t_{base})) = -$	1880 lb_ft/ft	connect	ions with				
Moist retained soil		M _{moist} = -F _{mois}	st h \times Xmoist h = -	6080 lb_ft/ft	overall system and existing cross channel.					
Base soil		Mnass = -Fnass		/ Ib_ft/ft						
Seismic		Masiamia – Fas	niamia h X X asismia k	= -10944 lb ft/ft						
Total		Mtotal = Mator	+ Mhasa + Maur +	$+ M_{P} + M_{moist} + M_{P}$	ass + Maaismia =	7822 lb ft/ft				
		TVILOLAI TVISLEIN	i i i i base i i i i sui							
Check bearing pressure										
Distance to reaction		$x = M_{total} / F$	$_{total_v} = 2.37 \text{ ft}$							
Eccentricity of reaction		$e = x - I_{base}$	/ 2 = -4.63 ¥							
Loaded length of base		$I_{load} = 3 \times x = 7.111 \text{ ft}$								
Bearing pressure at toe		$q_{toe} = 2 \times F_{tot}$	_{ial_v} / I _{load} = 928							
Bearing pressure at heel		q _{heel} = 0 psf	q _{heel} = 0 psf							
Allowable bearing capacity		$q_{allow} = q_{allow}$	q _{allow} = q _{allow_gross} = 4000 psf							
Factor of safety		$FoS_{bp} = q_{allow} / max(q_{toe}, q_{heel}) = 4.31$								
	PASS	- Allowable bea	ring pressure	exceeds maxim	applied b	earing pressure				
CROSS CHANNEL BOXES (8 FT)			In conforma	nce with USACE	N					
Peteining well design in seconds	nee with AC		EM 1110-2-2	2104 (Nov.						
Retaining wan design in accorda	nce with AC	1 310-19	Additional in	formation	Tedds cal	culation version 2.9.11				
Concrete details			,,							
Compressive strength of concrete		f'c = 4500 ps	i							
Concrete type		Normal weig	ht							
Reinforcement details										
Yield strength of reinforcement		f _y = 60000 ps	si							
Modulus of elasticity or reinforceme	ent	E _s = 290000	00 psi							
Compression-controlled strain limit		ε _{ty} = 0.002	In conforman	ce with USACE EM	1110-2-2104 (Nov.				
Cover to reinforcement <			2016), Table — such as stillin	2-1, for "formed and g basin walls, chute	I screeded surf spillway slabs	aces , and				
Front face of stem		c _{sf} = 3 in	channel lining	channel lining slabs on grade: greater than 12						
Rear face of stem		c _{sr} = 3 in	and less than	∠4 IN. (NICK [°] .						
Top face of base		c _{bt} = 3 in								
Bottom face of base		c _{bb} = 3 in								
		-								

Tekla Tedds	Project NHC/United Water - Freeman Diversion - 3BC				Job Ref. 067376			
Gannett Fleming	Section Cross Chann	el Boxes (8 FT)	Sheet No./Rev. 8 / Rev.0					
Roseville, CA 95661	Calc. by RC/SMU	Date 7/11/2023	Chk'd by J. Allen	Date 7/18/2023	App'd by T. Sell	Date 8/11/202		
vading details - Combination No.4 - kips/ft ^e	Shear force - Comb	ination No.4 - kips/ft		Bending moment - Combination	No.4 - kips_ft/ft			
	и5 5 0	3		-6.1				
Check stem design at base of ster Depth of section	n	h = 12 in				23.4		
Rectangular section in flexure - Se	ection 22.3		cc.					
Design bending moment combination 4		$V_{\rm I} = 2213$						
Depth of tension reinforcement		$u - II - C_{sr} - \varphi_{sr} / 2 = \delta.303 III$						
Area of compression reinforcement provided		$\Delta c_{\text{max}} = \pi \times \phi^2 / (A \times c_A) = 0.902 \text{ in}^{2/\text{ff}}$						
Area or compression reinforcement provided		Ast.prov – $\pi \times \psi_{sf}$ / (4 × Ssf) = U.6U2 IN ² /IL						
	la al	INO. / DARS (2)	2 C/C	0.000 : 2/5				
Area or tension remorcement provided		$A_{sr.prov} = \pi \times 0$	φ _{sr} -′ (4 × s _{sr}) =	= 0.802 in²/ft				
Maximum reinforcement spacing - cl	.1.7.2.3	$s_{max} = min(1)$	8 in, 3 × h) = 1					
Double of compression black		o = ^	f //0.05 4 \	- 4 040 -	ement is ad	equately sp		
Depin of compression block		$a - A_{sr.prov} \times a$	$\frac{1}{1} \frac{1}{1} \frac{1}$			- 0.005		
Neutral axis factor - cl.22.2.2.4.3		$p_1 = \min(\max(0.05 - 0.05 \times (1_c - 4 \text{ KSI}) / 1 \text{ KSI}, 0.05), 0.85) = 0.825$						
		$c = a / \beta_1 = 1.27$ in						
Strain in reinforcement		$\varepsilon_t = 0.003 \times 10^{-10}$	(a - c) / c = 0.(017221				
Character and the first for all		1: /	(0 CE · 0 CE	Section is in		controlled		
Strength reduction factor		$\varphi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / 0.003, 0.65), 0.9) = 0.9$						
Nominal flexural strength		$M_n = A_{sr,prov} \times t_y \times (d - a / 2) = 32225 \text{ lb_tt/tt}$						
Design flexural strength		$\phi M_n = \phi_f \times M_n = 29002 \text{ Ib_tt/tt}$						
		$M / \phi M_n = 0.7$	785					
Duitenstien winferen (h.,	PASS - D	Jesign flexura	al strength exceed	as factored l	pending mo		
By iteration, reinforcement required by analysis		$A_{sr.des} = 0.0018 \times h = 0.250 \text{ in}^{2/44}$						
	.0.1.1	Asr.min = 0.00	$10 \times 11 = 0.25$	than minimum or	na of roinfor	comont roc		
PA33 - AR		cement provid	eu is greater		eajor remior			
Rectangular section in shear - Sec	ction 22.5		requ	uires 0.003 instead of	+ (INOV. ∠016), 5 f 0.0018.	Section 2.9		
Design snear force	2.4	v = 6185 lb/i	π As_ Δε	$min = 0.003^{*}h^{*}(12 in)$	$f(t) = 0.432 \text{ in}^{2}$	2/ft (both faces		
Concrete modification factor - cl.19.2	2.4	$\lambda = 1$	H9_		02 1 0.002 J III' 2			
Size offect modification factor and 0	0 5 5 4 0	$a = \mathbf{x} \cdot \mathbf{x} \mathbf{b} \mathbf{b}$						
Deinfergement action	2.3.3.1.3	$\Lambda_s = \min(\nu(2$	/(I+(a/TIN	j = 1				
	00 - - <i>i</i>	$p - A_{sr,prov} / a = 0.000$						
Nominal concrete shear strength - e	$V_c = min(8 \times \lambda_s \times \lambda \times \rho^{1/3}, 5 \times \lambda) \times \sqrt{(f_c \times 1 \text{ psi})} \times d = 10937 \text{ lb/ft}$							

 $\phi_s = 0.75$

Strength reduction factor

Tekla Tedds	Project Job Ref.										
Gannett Fleming	Section				Chaot No /Dev						
2251 Douglas Boulevard	el Boxes (8 FT)			9 / Rev.0							
Suite 200	Calc. by	Date	Chk'd by	Date	App'd by	Date					
Roseville, CA 95661	RC/SMU	7/11/2023	J. Allen	7/18/2023	T. Sell	8/11/2023					
Design concrete shear strength - c	17631	$\phi V_{c} = \phi_{c} \times V_{c}$	= 8203 lb/ft								
		$\sqrt{/}$ $\sqrt{/}$ $\sqrt{/}$ $\sqrt{/}$	54								
		ν / ψνε – Ο./	54	PASS - No she	ar reinforcen	nent is required					
Horizontal reinforcement paralle	I to face of ste	em		1 400 - 110 5110		ient is required					
Minimum area of reinforcement - c	17611	$A_{\rm max} = 0.0018 \times t_{\rm max} = 0.259 \text{ in}^2/\text{ft}$									
Transverse reinforcement provideo	1	No 5 hars $@$ 12" c/c each face									
Area of transverse reinforcement r	- provided	$\Delta_{\text{privery}} = 2 \times \pi \times \Phi_{\text{pri}}^2 / (4 \times e_{\text{priv}}) = 0.614 \text{ in}^2/\text{ff}$									
,	PASS - Area	of reinforceme	nt provided is	areater than an	ea of reinforc	ement reauired					
Charle have design at the			As m	$nin = 0.003^{*}h^{*}(12)$ in	$/(ft) = 0.432 \text{ in}^2$	(ft (both faces)					
Check base design at toe		h - 12 in	Note	that t_stem = $h = 1$	2 in.	. (2001 / 2000)					
Depth of section		n – 12 m	As_n	$nin < As_prov = 0.6$	14 in^2/ft (both f	aces)					
Rectangular section in flexure -	Section 22.3										
Design bending moment combinat	ion 4	M = 28420 lb	M = 28420 lb_ft/ft								
Depth of tension reinforcement		$d = h - c_{bb} - \phi_{bb} / 2 = 8.563$ in									
Compression reinforcement provid	Compression reinforcement provided			No.7 bars @ 9" c/c							
Area of compression reinforcemen	t provided	$A_{bt.prov} = \pi \times \phi$	Abt.prov = $\pi \times \phi_{bt}$ / (4 × sbt) = 0.802 In ² /tt								
Tension reinforcement provided	No.7 bars @	9" c/c									
Area of tension reinforcement prov	$A_{bb.prov} = \pi \times c$	$\phi_{bb}^2 / (4 \times s_{bb}) =$	• 0.802 in²/ft								
Maximum reinforcement spacing -	cl.7.7.2.3	s _{max} = min(18	3 in, 3 × h) = 18	in							
				PASS - Reinford	ement is ade	quately spaced					
Depth of compression block	$a = A_{bb,prov} \times 1$	f _y / (0.85 × f' _c) =	1.048 in								
Neutral axis factor - cl.22.2.2.4.3	β₁ = min(max	(0.85 - 0.05 × ((f' _c - 4 ksi) / 1 ksi,	0.65), 0.85) =	0.825						
Depth to neutral axis	c = a / β ₁ = 1	.27 in									
Strain in reinforcement	$\epsilon_t = 0.003 \times ($	d - c) / c = 0.01	7221								
				Section is in	the tension	controlled zone					
Strength reduction factor	φ _f = min(max	(0.65 + 0.25 ×(a	εt - εty) / 0.003, 0.	65), 0.9) = 0.9							
Nominal flexural strength		$M_n = A_{bb,prov} \times f_y \times (d - a / 2) = 32225 \text{ Ib_ft/ft}$									
Design flexural strength		$\phi M_n = \phi_f \times M_n = 29002 \text{ Ib}_ft/ft$									
	M / φM _n = 0.980										
		PASS - D	esign flexural	strength exceed	is factored be	ending moment					
By iteration, reinforcement require	d by analysis	A _{bb.des} = 0.78	5 in²/ft								
Minimum area of reinforcement - c	1.7.6.1.1	$A_{bb.min} = 0.00$	18 × h = 0.259	in²/ft <	_						
PASS - A	rea of reinfor	cement provide	ed is greater th	han minimum ar	ea <mark>of reinforc</mark>	ement required					
Rectangular section in shear - S	ection 22.5		Ab_n	nin = 0.003*h*(12 ir	n/ft) = 0.432 in^2	/ft (both faces)					
Design shear force		V = 2962 lb/f	Ab_n t	$\min < Ab_prov = (0.$	802+0.802) in^2	/ft (both faces)					
Concrete modification factor - cl.19	9.2.4	$\lambda = 1$									
Depth of tension reinforcement		d = 8.56 in									
Size effect modification factor - cl.	$\lambda_{s} = \min(\sqrt{(2 / (1 + (d / 1 in) / 10))}, 1.0) = 1$										
Reinforcement ratio	$\rho = A_{bb,prov} / d = 0.008$										
Nominal concrete shear strength -	$V_c = min(8 \times \lambda \times \rho^{1/3}, 5 \times \lambda) \times \sqrt{(f_c \times 1 \rho si)} \times d = 10937 \text{ lb/ft}$										
Strength reduction factor	$\phi_{\rm s} = 0.75$										
Design concrete shear strength - c	$\Phi V_c = \Phi_c \times V_c$	$\phi V_c = \phi_s \times V_c = 8203 \text{ lb/ft}$									
		$\sqrt{/}$	S1								
		ν / ψνς - 0.30									

