

## **Las Posas Valley Groundwater Basin Technical Advisory Committee Regular Meeting**

Tuesday February 3, 2026, 2:00 PM

Via Zoom:

<https://us02web.zoom.us/j/84168071218?pwd=Kv42H0XegH4TthbvJUgzTrzACgXM8b.1>

Webinar ID: 841 6807 1218

Passcode: 150451

### **NOTICE OF MEETING**

NOTICE IS HEREBY GIVEN that the Las Posas Basin Technical Advisory Committee (TAC) will hold a regular meeting via Zoom at **2:00 PM on Tuesday February 3, 2026**.

### **AGENDA**

- A. Call to Order**
- B. Roll Call**
- C. Agenda Review**
- D. Public Comments**
- E. TAC Member Comments**
- F. Regular Agenda**

#### **1. Approve Minutes from Previous Meeting**

The TAC will review and consider adoption of minutes from the previous meeting held on January 20, 2026; draft minutes for which are attached beginning on agenda page 4.

#### **2. Draft Recommendation Report Review: Draft Basin Optimization Yield Study Report**

The Las Posas Valley Basin Watermaster (Watermaster) requested TAC consultation on the Draft Las Posas Valley Basin Optimization Yield Study (Draft BOY Study) on December 17, 2025. TAC discussion of the Draft BOY Study occurred in the January 6, 2026 and January 20, 2026 Regular TAC Meetings. TAC members provided verbal comments on the Draft BOY Study in those meetings and written comments to the TAC Administrator following discussion. TAC comments were used to prepare a draft Recommendation Report on the Draft BOY Study, which includes all written TAC comments as attachments. The draft Recommendation Report is included starting on agenda page 11.

The TAC will review and discuss the draft Recommendation Report and consider voting to accept it and authorize the TAC Administrator to finalize the report and submit it to the Watermaster. Should additional review and revision be necessary, the TAC will consider scheduling a special meeting to complete the Recommendation Report for submittal by the Watermaster deadline of February 16, 2026.

### **3. Draft Recommendation Report Review: Draft Water Year 2025 Annual Report**

The Watermaster requested TAC consultation on the draft Water Year 2025 Las Posas Valley Basin Annual Report (draft WY2025 Annual Report) on January 15, 2026.

The TAC discussed the draft WY2025 Annual Report in the January 20, 2026 Regular TAC Meeting. During that meeting TAC members provided verbal comments on the draft WY2025 Annual Report and written comments were later provided to the TAC Administrator. TAC comments were used to prepare a draft Recommendation Report on the draft WY2025 Annual Report, which includes all written TAC comments as attachments. The draft Recommendation Report is included starting on agenda page 38.

The TAC will review and discuss the draft Recommendation Report and consider voting to accept it and authorize the TAC Administrator to finalize the report and submit it to the Watermaster. Should additional review and revision be necessary, the TAC will consider scheduling a special meeting to complete the Recommendation Report for submittal by the Watermaster deadline of February 15, 2026.

### **4. Continued Discussion of Request for TAC Members to Sign Acknowledgement and Agreement to be Bound to the Protective Order Regarding United Water Conservation District Model**

In the January 6, 2026 and January 20, 2026 TAC meetings, the TAC discussed the request to sign an acknowledgement and agreement to be bound by a protective order regarding United Water Conservation District's model. Questions regarding the specific limitations on data and information the Protective Order would allow the TAC to access, review, and include in public meetings were raised during this discussion. A set of testing questions designed to help clarify the goals and application of the Protective Order were included in the January 20, 2026 meeting agenda and TAC members provided comments on those testing questions. Those comments and a revised set of questions are attached on agenda page 49. The TAC will review and discuss the revised questions in preparation for submitting them to the Watermaster in response to the request to be bound by the Protective Order.

### **5. Update on Upcoming Committee Consultation Review Requests**

The TAC will receive an update on the schedule for upcoming committee consultations from the Watermaster Representative. Known current and upcoming consultation are summarized in the table below:

| <b>Consultation Description</b>          | <b>Expected Request Date</b>     | <b>Expected Review Due Date</b> |
|------------------------------------------|----------------------------------|---------------------------------|
| Draft Basin Optimization Yield Study     | 12/17/2025                       | 2/16/2026                       |
| Draft Annual Report                      | 1/15/2026                        | 2/15/2026                       |
| Monitoring Network Review and Evaluation | TBD, mid 1 <sup>st</sup> Quarter | TBD                             |
| Calleguas ASR Project Operations Plan    | TBD                              | TBD                             |

### **6. Schedule for Completing Current Committee Consultations and Recommendation Reports**

The TAC will discuss the schedule for completing current consultation requests from the Watermaster.

**G. Items for Future Agenda**

Potential items for future agenda will be considered by the TAC

**H. Adjourn**

## **Attachment 1**

### **Minutes of January 20, 2026 TAC Regular Meeting**

## **Las Posas Valley Groundwater Basin Technical Advisory Committee Regular Meeting**

### **Meeting Minutes for January 20<sup>th</sup> 2026**

#### **A. Call to Order**

Chair Taylor called the meeting to order at 2:00 pm.

#### **B. Roll Call**

All voting TAC members were present (via Zoom):

- Vice Chair Tony Morgan – Present
- Chair Chad Taylor – Present
- Dr. Bob Abrams – Present

All non-voting TAC members were present (via Zoom):

- Bryan Bondy – Present
- Kim Loeb – Present

Chair Taylor reported that the Las Posas Valley Technical Advisory Committee (TAC) meeting had a quorum with all three voting members and both non-voting members present.

#### **C. Agenda Review**

Chair Taylor reported that an agenda for the meeting was published and notified by the Watermaster. He asked TAC members and members of the public for comments on items on the agenda and none were raised.

#### **D. Public Comments**

Chair Taylor offered an opportunity for members of the public to raise items not on the agenda.

Mr. Reddy Pakala addressed the TAC, speaking as a resident of the City of Moorpark and as a former manager of Waterworks Districts 1 and 19, which provide water supply to the City of Moorpark and surrounding areas. Mr. Pakala expressed concerns regarding the United Water Conservation District groundwater model and the associated protective order. He stated that limitations on access to the model are impeding progress on groundwater modeling efforts in the West Las Posas Management Area (WLPMA) and creating obstacles to public review. He urged the Watermaster to take steps to obtain access to the United Water Coastal Plain model to support completion of the Basin Optimization Yield Study analysis with greater confidence.

Chair Taylor thanked Mr. Pakala for his comments and asked whether there were any additional public comments on agenda items. None were raised.

#### **E. TAC Member Comments**

Chair Taylor asked the TAC members for comments on items not on the agenda; none were provided.

## F. Regular Agenda

### 1. Approve Minutes from previous meeting

Chair Taylor noted that minutes from the January 6, 2026 meeting were included in the agenda packet, and asked TAC members for any comments, corrections, or revisions to the draft minutes and indicated that he had the document open and was prepared to make tracked changes.

Dr. Abrams, Mr. Bondy, and Mr. Loeb all noted a minor correction regarding a reference to the Calleguas ASR study group initial meeting. Through discussion they informed the TAC that the initial meeting of the group was held in November 2025. Chair Taylor asked if it would be acceptable to leave the minutes stating that the initial meeting had been held, without specifying a date. The other TAC members agreed.

Chair Taylor asked whether there were any additional comments or corrections to the minutes. Hearing none, he asked for public comments. None were made. Chair Taylor then asked whether the TAC was comfortable accepting the minutes as edited.

**MOTION:** Dr. Abrams moved to accept the revised minutes of the January 6 2026 meeting

**SECOND:** Mr. Morgan seconded the motion

**VOTE:** Unanimously approved

### 2. Review Discussion: Draft Basin Optimization Yield Study Report (BOY Study)

Chair Taylor opened discussion on the draft Basin Optimization Yield Study (BOY Study), which was initially presented to the TAC at the January 6, 2026 meeting and tabled for further discussion. Chair Taylor noted that this is the TAC's final public meeting before a recommendation report is required and reminded members that formal tabular comments are due by January 23, 2026.

Chair Taylor identified a need for clearer explanation of the rampdown calculation period, noting that while the report refers to fall of 2026 through fall of 2039 as a 14-year period, readers may interpret this as 13 years unless the rationale for including the final rampdown year is clarified.

Dr. Abrams stated that he had several minor comments best addressed through tabular comments and expressed that overall the report was strong. He suggested that the discussion of uncertainty related to the boundary between the West and East Las Posas management areas could be improved, emphasizing that despite model limitations, the results support a workable rampdown and project strategy. Chair Taylor agreed and noted that while this point is mentioned briefly, expanding on the adequacy of the work for moving forward would be beneficial for public understanding.

Chair Taylor expressed appreciation for the inclusion of contextual information regarding prior physical in-lieu use and historical groundwater level changes, noting that this background improved clarity regarding modeling assumptions.

Mr. Morgan suggested that the conclusions section would benefit from a summary table consolidating key figures, such as sustainable yield and assumed pumping by scenario and management area, to improve accessibility for stakeholders. He also noted that the conclusions focused heavily on rampdown scenarios and recommended emphasizing that implementation of projects could avoid the need for rampdown. Chair Taylor agreed and noted that a comparative table had been helpful during his own review.

Mr. Morgan further emphasized the importance of presenting key numbers in a single, easy-to-reference location, noting that the volume of data could be overwhelming even for technical readers.

Chair Taylor raised questions regarding the methodology used to identify the uniform rampdown, noting that the 20 percent reduction appeared to be a round number and questioning whether rampdown requirements in the WLPMA could be refined further given remaining inflow/outflow discrepancies. Members discussed whether additional iteration or clarification of assumptions was warranted.

Mr. Bondy commented that reductions applied uniformly to pumping throughout the basin were based on interpretation of the judgment, though physical implementation may differ. He noted that while the volumes involved may be small in some areas, they are significant to affected pumpers.

Chair Taylor observed that total basin-wide pumping under the rampdown scenario is similar to Water Year 2025 pumping but emphasized that the spatial distribution of pumping is critical and should be clearly explained to avoid misinterpretation by nontechnical readers.

Mr. Morgan raised concerns regarding treatment of compliance at a well that remains below minimum thresholds under the modeled rampdown, questioning whether the rationale for deeming this acceptable would align with Department of Water Resources (DWR) expectations. He suggested expanding discussion of damped water-level responses and how those assumptions affect other wells.

Chair Taylor and other members discussed whether monitoring data and real-world observations should play a larger role in evaluating rampdown volumes and avoiding over-correction. Mr. Bondy emphasized that rampdown estimates represent a snapshot in time and should be evaluated against future monitoring results.

Members agreed that uncertainty in modeling assumptions should be more explicitly acknowledged, particularly in the conclusions and executive summary, to provide context for policy decisions related to both rampdown and in-lieu projects.

Mr. Morgan identified apparent typographical and rounding errors in reported pumping values for the East and West Las Posas management areas. Chair Taylor directed that these issues be included in tabular comments.

Dr. Abrams suggested including discussion of longer-term opportunities to increase operational yield toward the judgment's aspirational 40,000 acre-feet per year, referencing additional projects previously evaluated in the Basin Optimization Plan. Chair Taylor and Mr. Loeb agreed that referencing ongoing project development would be appropriate and informative.

Chair Taylor raised a question regarding whether the modeled rampdown schedule would achieve sustainable conditions by 2040, noting potential ambiguity between achieving a sustainable pumping rate versus achieving sustainable water levels by that date. Members agreed this warranted clarification in the report.

Public comment was received from Richard Cavaletto, who questioned how in-lieu water and rampdown measures should be applied across management areas, particularly where localized impacts are observed. Discussion followed regarding the distinction between targeted project implementation and basin-wide rampdown requirements under the judgment.

Chair Taylor closed the discussion by reminding TAC members that tabular comments are due January 23<sup>rd</sup> and that a draft recommendation report will be prepared for review ahead of the February 3<sup>rd</sup> TAC meeting. No further public comments were received.

### **3. Consultation Request: Draft Water Year 2025 Annual Report**

Chair Taylor introduced the new consultation request regarding the draft Water Year 2025 Annual Report for the Las Posas Valley Basin, noting that the document was received by the TAC the prior Thursday (January 15, 2026) and included in the agenda. Chair Taylor stated that the TAC has a 30-day review period, with comments due by February 15<sup>th</sup>, and that the review schedule mirrors that of the BOY Study, with tabular comments due to the TAC Administrator by January 23, 2026. Mr. Taylor noted that this meeting represents the only opportunity for TAC discussion prior to preparation of a recommendation report.

TAC members reported that they had not yet completed a full review. Comments were provided by Dr. Abrams regarding missing values on groundwater elevation maps. Dr. Abrams suggested that the report include explanatory text clarifying why measurements were unavailable for specific wells or time periods and whether problematic wells should be replaced as key monitoring wells. Well 02N21W16J03 which was reported to have a blocked sounding tube preventing monitoring was cited as an example.

Mr. Loeb responded that the monitoring program relies on data collected by multiple agencies and that Watermaster staff are actively evaluating the monitoring network as part of an ongoing monitoring program assessment. He noted that while challenges exist, particularly with data consistency, this broader evaluation effort is intended to address such issues.

Dr. Abrams reiterated that a brief explanation aimed at lay readers would be helpful to prevent confusion regarding missing data.

Mr. Taylor invited additional context from Watermaster staff member Rob Hampson, who explained that well 02N21W16J03 had recently been measured using alternative equipment, though the data fell outside the reporting period and will appear in the next annual report. He noted broader challenges related to measuring active agricultural wells and emphasized that efforts are ongoing to improve data collection and coordination.

Chair Taylor asked whether there were other major comments. Mr. Bondy encouraged members to closely review the change-in-storage analysis, noting that certain polygons driving large storage changes appear to rely on groundwater level data not shown in earlier figures. He questioned the source of those data and expressed concern that they significantly influence reported results.

Mr. Loeb clarified that the change-in-storage estimates are derived from regression relationships based on modeled results and observed water levels. Mr. Bondy reiterated that the absence of reported groundwater level changes for those polygons warranted clarification. Chair Taylor asked that this issue be included in tabular comments.

Mr. Loeb noted that updated groundwater extraction data had been received shortly before publication and that some figures in the report would be revised to reflect those updates. Chair Taylor acknowledged the timing challenges associated with annual reporting and thanked Watermaster staff for their efforts.

No public comments were received.

**4. Continued Discussion of Request for TAC Members to Sign Acknowledgement and Agreement to be Bound to the Protective Order Regarding United Water Conservation District Model**

Chair Taylor introduced continued discussion regarding the request for TAC members to sign an acknowledgement agreement related to the protective order. Mr. Taylor asked Mr. Morgan if the PAC had discussed the matter at its recent meeting. Mr. Morgan informed the TAC that PAC had not discussed the protective order.

Mr. Taylor invited TAC members to share any new thoughts on this item.

Mr. Bondy raised concerns about timing, noting that any intent to facilitate further model review would be impractical given the January 23 deadline for BOY Study comments. Chair Taylor responded that the TAC has not requested model files as part of its current review and is not aware of any requirement to be bound by the protective order in order to prepare recommendation reports.

Mr. Morgan noted that the BOY Study is publicly available, and therefore no longer subject to protection. Chair Taylor agreed and stated that additional discussion is underway regarding possible clarification or expansion of the protective order to better define what constitutes protected model data.

Chair Taylor referenced a set of questions regarding the protective order included in the agenda and noted that these would be submitted to the Watermaster as feedback rather than as part of a recommendation report. TAC members were invited to provide additional input by January 27 for inclusion in the next agenda.

No further public comments were received.

**5. Update on Upcoming Committee Consultation Review Requests**

Chair Taylor reviewed upcoming consultation requests and asked whether the monitoring network evaluation should be included as a forthcoming item. Mr. Loeb indicated that while no firm date is set, the evaluation is expected in the coming months and does not carry a regulatory deadline. Chair Taylor stated that it would be listed as "TBD" on the next agenda.

No additional upcoming items were identified by TAC members or the public.

**6. Schedule for Completing Current Committee Consultations and Recommendation Reports**

Chair Taylor summarized the schedule for completing the two active consultation reviews: the draft Basin Optimization Yield Study and the draft Water Year 2025 Annual Report. Chair Taylor reminded members that tabular comments for both documents are due by January 23<sup>rd</sup>, and that draft recommendation reports will be prepared for inclusion in the February 3, 2026 TAC meeting agenda.

Chair Taylor noted that the Annual Report Recommendation Report is due February 15<sup>th</sup> and the BOY Study Recommendation Report is due February 16<sup>th</sup>, and that a special meeting may be required if additional revisions are needed. Chair Taylor clarified that comments on the protective order questions are requested by January 27<sup>th</sup>.

No public comments were received.

**G. Items for Future Agenda**

Chair Taylor asked if TAC members or the public wanted to bring items to the TAC's attention for consideration in future TAC meeting agendas. No comments were provided.

**H. Adjourn**

Chair Taylor thanked the TAC members and public for attending and made a motion to adjourn the meeting.

**MOTION:** Chair Taylor moved to adjourn the meeting at 3:13 pm

**SECOND:** Dr. Abrams seconded the motion

**VOTE:** Unanimously approved

## **Attachment 2**

### **Draft Recommendation Report – Las Posas Valley Basin, Draft Basin Optimization Yield Study Report**

# **LAS POSAS VALLEY TECHNICAL ADVISORY COMMITTEE**

January 29, 2026

## **RECOMMENDATION REPORT**

**To:** Las Posas Valley Watermaster

**From:** Las Posas Valley Watermaster Technical Advisory Committee, prepared by Chad Taylor, Administrator and Chair

**Re:** Recommendation Report – Las Posas Valley Basin, Draft Basin Optimization Yield Study Report

The Las Posas Valley Watermaster Technical Advisory Committee (TAC) provides this Recommendation Report regarding the draft Basin Optimization Yield Study in response to a committee consultation request transmitted to the TAC on December 17, 2025 by Las Posas Valley Basin Watermaster (Watermaster) staff.

## **BACKGROUND**

The Las Posas Valley Adjudication judgment requires preparation of a Basin Optimization Yield (BOY) Study to evaluate Basin Optimization Yield, set the Operating Yield, and identify the need for and quantification of the rate of pumping rampdown to achieve sustainable groundwater management by 2040. A draft of the Las Posas Valley Basin Optimization Yield Study was provided to the TAC for review. This followed previous TAC review of preliminary model scenario results for the simulations included in the BOY Study in the summer of 2025. TAC prepared and submitted a Recommendation Report presenting comments and recommendations on the preliminary model scenario results on September 16, 2025. In preparation of the draft BOY Study, the Watermaster considered and incorporated comments and recommendations the TAC provided after reviewing the preliminary model scenario results.

The draft BOY Study follows coordination and consultation between the Watermaster, Dudek, and the TAC regarding the methods for assessing basin yield and initial results of those assessments. The Watermaster requested TAC recommendations or comments on the draft and the TAC discussed and reviewed the draft BOY Study in meetings on January 6 and 20, 2026. TAC comments and recommendations following review of the draft BOY Study are summarized in this Recommendation Report. Detailed TAC comments and editorial suggestions are also attached in tabular format organized by TAC member, comment type and topic, and draft BOY Study page and section to provide additional information and assist the Watermaster in tracking and responding to comments.

The draft BOY Study represents a significant effort on the part of the Watermaster and their groundwater consultant, Dudek. The TAC appreciates the considerate approach both parties have taken in analyzing optimized yield in the Las Posas Valley Basin (LPVB) and presenting a thorough report summarizing the work.

The TAC will review this Recommendation Report and discuss and consider voting to approve it in a regular meeting on February 3, 2026.

## **TAC RECOMMENDATIONS**

### **1. RECOMMENDATION 1: CLARIFY HOW THE ARROYO SIMI-LAS POSAS WATER ACQUISITION PROJECT WAS SIMULATED IN THE MODEL SCENARIOS**

It is unclear how the Arroyo Simi-Las Posas water acquisition project (Basin Optimization Plan Project 5) was included in the various simulations. Please clarify in text and add a simple table that lists the amount of surface water that was simulated to enter the LPVB for each simulation. This is particularly important for the rampdown scenarios, which are described as being no-project scenarios. If they are no-project scenarios, please clarify that the current flows in the Arroyo Simi-Las Posas that Basin Optimization Plan Project 5 are intended to maintain were not included.

#### **1.1 Recommendations:**

Clarify and document how surface water flows were adjusted between scenarios to include or exclude the Arroyo Simi-Las Posas water acquisition project.

#### **1.2 Technical Rationale for Recommendation:**

The Arroyo Simi-Las Posas water acquisition project is designed to maintain recent historical surface water flow into the LPVB. If the no-project rampdown scenarios do not include the contribution to the water budget from the project, that should be clearly stated in the BOY Study.

#### **1.3 Summary of Facts in Support of Recommendation:**

- The Arroyo Simi-Las Posas water acquisition project (Basin Optimization Plan Project 5) has been described as a means of maintaining current and recent historical surface water flow into the LPVB.
- If maintenance of this surface water inflow is dependent on the project, then it should not be included in the no-project rampdown scenario simulations.

### **2. RECOMMENDATION 2: PRESENT BASIN OPTIMIZATION YIELD AND RAMPDOWN CONSISTENT WITH JUDGEMENT**

The Judgment defines Basin Optimization Yield as the estimated yield projected to be available to achieve sustainable groundwater management by 2040 and rampdown as the deficit between the effective Operating Yield and the Basin Optimization Yield. The draft BOY Study references these definitions and identifies the Basin Optimization Yield as a

groundwater production rate of 36,860 acre-feet per year (AFY), which includes implementation of Basin Optimization Projects and maintains sustainable groundwater conditions. However, the draft BOY Study then uses a different annual production rate to identify and define rampdown and rampdown rate. According to the Judgment, rampdown would therefore be 40,000 AFY minus 36,860 AFY, which is 3,140 AFY (current Operating Yield is 40,000 AFY and BOY Study calculated Basin Optimization Yield is 36,860 AFY).

This may point to a conflict within the Judgement. The reduction in pumping below the Operational Yield identified in the draft BOY Study as the Basin Optimization Yield applies only to those LPVB groundwater users who would receive project in lieu water deliveries. However, the Judgment requires rampdown to be applied to all groundwater users in the LPVB. The Judgment does not appear to contemplate a condition in which a no-project scenario results in rampdown, which is the context in which rampdown has been discussed and estimated in the draft BOY Study.

### **2.1 Recommendations:**

Explore and characterize how rampdown is being presented in the BOY Study in contrast to the definitions in the Judgment.

### **2.2 Technical Rationale for Recommendation:**

The Judgment and the draft BOY Study appear to address rampdown differently, as discussed above.

### **2.3 Summary of Facts in Support of Recommendation:**

- The Judgment includes the following definitions:
  - Basin Optimization Yield is the estimated yield projected to be available to achieve sustainable groundwater management by 2040.
  - Rampdown is the deficit between the effective Operating Yield and the Basin Optimization Yield.
- The draft BOY Study references these definitions and identifies the Basin Optimization Yield as a groundwater production rate of 36,860 AFY but then defines rampdown using a different approach than what is defined in the Judgment.

## **3. RECOMMENDATION 3: CONSIDER REFINING HOW RAMPDOWNS IS ESTIMATED FOR THE WEST LAS POSAS MANAGEMENT AREA**

The basin-wide and differential rampdown rate for the WLPMA identified in the draft BOY Study is based on a simple 20 percent reduction in pumping throughout the management area. Model simulations presented in the study show that this reduction in pumping does result in sustainable conditions as they are defined in the study. However, the water budget for the rampdown model simulations also shows that inflow to the management area exceeds outflow by an average of 500 acre-feet per year (AFY). This implies that the simulated reduction in pumping exceeds the volume required to achieve sustainability. The pumping reduction identified for the WLPMA is 3,384 AFY and the 500 AFY imbalance between inflow and outflow represents just under 15 percent of the total pumping

reduction. If rampdown is implemented pumpers will be required to reduce groundwater use in the WLPMA and the Watermaster should take care to limit those reductions to what is required to achieve sustainable conditions.

### **3.1 Recommendations:**

Consider modifying the WLPMA rampdown pumping reductions so that outflow is more closely matched to inflow and pumping reductions are limited to the volume required to achieve sustainability.

### **3.2 Technical Rationale for Recommendation:**

A groundwater system where long-term inflow exceeds outflow should show continuously increasing groundwater elevations and storage volumes. While these are positive changes to a groundwater basin, they may come at the cost of reduced water availability for groundwater users in the LPVB. The stated metric for assessing sustainability in the basin is to maintain water levels above the Minimum Thresholds (MTs) established in the LPVB Groundwater Sustainability Plan (GSP) or stable groundwater elevations over the future model simulation period. These metrics do not require groundwater elevations or storage to increase over time, so a condition where long-term inflow exceeds outflow is not required. Maintaining a long-term condition wherein inflow exceeds outflow implies that outflow in the form of groundwater pumping, could be increased, reducing the required rampdown volume.

### **3.3 Summary of Facts in Support of Recommendation:**

- The water budget summary for the rampdown scenarios shows that inflow to the WLPMA exceeds outflow by an average of 500 AFY.
- The difference between annual average inflow and outflow of 500 AFY is just under 15 percent of the total annual pumping reduction required to achieve rampdown.
- This difference may indicate that the reduction in pumping identified for rampdown in the management area is greater than what would be required to achieve sustainable groundwater conditions.

## **4. RECOMMENDATION 4: CONSIDER ADDRESSING THE EFFECTS OF THE SOMIS FAULT MODEL BOUNDARY CONDITION ON IN LIEU AND RAMPDOWN SIMULATIONS**

As noted in the draft BOY Study and raised by the TAC in previous recommendation reports, the Coastal Plain Model includes a boundary condition on the Somis fault that is inconsistent with the agreed-upon hydrogeologic conceptual model of the LPVB, the boundary condition in the East Las Posas Model, and the version of the Ventura Regional Groundwater Flow Model (VRGFM) that was used to develop the LPVB GSP. While the draft BOY Study indicates that the simulated in lieu and rampdown scenarios for the WLPMA are sustainable despite this issue with the Coastal Plain Model, it is possible that the volumes of water identified for in lieu delivery and reduced pumping in the projects and rampdown scenarios, respectively, exceed what would actually be required to achieve sustainable groundwater conditions in the WLPMA.

#### **4.1 Recommendations:**

Consider estimating the volumetric effect the inconsistent boundary condition has on the project and rampdown scenario simulations. This could allow the in lieu and rampdown volumes to be refined downward, reducing costs and impacts to WLPMA groundwater users.

#### **4.2 Technical Rationale for Recommendation:**

The Coastal Plain model boundary condition at the Somis fault is inconsistent with the agreed upon hydrogeologic conceptualization and observed conditions in the eastern portion of the WLMPA. As a result the Coastal Plain model simulates flow leaving the WLPMA when groundwater elevations in the eastern part of the management area rise in response to the simulated project and rampdown changes to the local water budget. An analysis of the volume of water that leaves the management area could show how much the in lieu project and rampdown scenarios overestimate pumping reductions, thereby allowing for reduced in lieu water delivery and rampdown requirements.

#### **4.3 Summary of Facts in Support of Recommendation:**

- The Coastal Plain model boundary condition at the Somis fault is not consistent with the agreed-upon hydrogeologic conceptual model.
- Increased groundwater elevations resulting from reduced pumping in project and rampdown scenarios causes the model to simulate groundwater flow out of the WLMPA across the Somis fault.
- In practice, the groundwater that leaves the WLPMA in the model would remain in the management area increasing water levels above what is simulated in the scenarios presented in the draft BOY Study.
- This outflow implies that the in lieu delivery and rampdown pumping reduction volumes identified in the draft BOY Study could be reduced.

### **5. RECOMMENDATION 5: CLARIFY EXISTING AND PROJECTED CONDITIONS IN THE EPWORTH GRAVELS MANAGEMENT AREA**

The information presented for the Epworth Gravels Management Area (EGMA) should be expanded to explain several factors. These include the presence of groundwater producers without allocations in the Judgment, the effects of recent pumping patterns on model simulations, and the need for rampdown in the management area if the Basin Optimization Plan projects are not implemented.

#### **5.1 Recommendations:**

- In section 3.2.3.1:
  - Provide more information and quantify or estimate how much pumping in the EGMA is not accounted for in the distribution of allocations in the Judgment.
  - Provide similar information for the other management areas or note the absence of pumbers without allocations in those management areas.

- Provide additional information regarding the effects of using water year 2024 pumping in the EGMA for the 47-year model period and how this will be accounted for in the Operating Yield for the management area and LPVB.
- Explain why the difference between the estimated sustainable yield and rampdown volumes were so large for the EGMA.
- Explain why EGMA pumping is reduced in the rampdown scenarios when the baseline production rate for the management area is already lower than the sustainable yield, as indicated on page 13 of the draft BOY Study.
- Provide additional discussion of the differential rampdown scenario results in the EGMA, specifically addressing continuing declines in groundwater levels shown on Figure 3-13.

### **5.2 Technical Rationale for Recommendation:**

Technical rationale for each recommendation above is included in the context of the recommendation.

### **5.3 Summary of Facts in Support of Recommendation:**

A summary of facts for this recommendation is not applicable.

## **6. RECOMMENDATION 6: CLARIFY HOW PUMPING AND WATER BUDGET CHANGES WERE APPLIED IN MODEL SCENARIOS, SPECIFICALLY WITH RESPECT TO TEMPORAL VARIABILITY IN PUMPING VOLUME AND DISTRIBUTION**

It is not clear from the descriptions of model scenarios if pumping was held constant for every year of the simulation period for each scenario, or if pumping volume and/or distribution were varied during the simulation period.

While this comment and recommendation applies to all model simulations, it is particularly important for the rampdown scenarios. It is unclear whether pumping at the fully reduced rate was used for the entire rampdown simulation period or if pumping was reduced incrementally each year. If it is the former, the TAC questions whether rampdown will be effective in achieving sustainable groundwater conditions by 2040. As presented in the BOY Study, the model scenarios indicate that over the 47-year model period the annual groundwater production volumes pumped in the rampdown scenarios will achieve sustainability. However, the BOY Study does not appear to assess how long after reaching the rampdown pumping rate it will take for water levels to rise to the thresholds identified as sustainable. Prolonged pumping at rates in excess of the rampdown rate are likely to result in water levels below the minimum thresholds in representative monitoring wells and it is not clear that one year of pumping at the rampdown rate at the end of the 14-year rampdown period will be sufficient to facilitate water level recovery.

### **6.1 Recommendations:**

- Clarify how pumping and other water budget changes were applied in model scenarios, especially as it relates to rampdown rate implementation over time during the model period.

- Assuming the rampdown was assumed to have occurred before the start of each scenario and pumping during the entire model period was equal to the rampdown rate for the scenario, explain how long water level recovery to sustainable conditions may take after rampdown is complete.

#### **6.2 Technical Rationale for Recommendation:**

The BOY Study presents rampdown scenario model results that appear to have assumed pumping over the entire 47-year model period at the reduced rampdown rate that will only be achieved after a period of progressive pumping reduction according to a rampdown rate schedule. These simulations do not appear to show how long it will take water levels in the LPVB to respond once rampdown is completed and as defined in the Judgment and BOY Study that would not occur until 2040.

#### **6.3 Summary of Facts in Support of Recommendation:**

- Modeling over a long period at a reduced pumping rate will show higher water levels than can be achieved by prolonged pumping at higher rates.
- The 14-year rampdown period includes linear reduction in groundwater pumping every year.
- Rampdown model scenarios appear to have assumed pumping would be constant every year during the 47-year model period.
- Water levels are likely to take time to rise once rampdown is complete.

### **7. RECOMMENDATION 7: CLEARLY IDENTIFY ASSUMPTIONS ASSOCIATED WITH MODELING AND OTHER ANALYSES IN THE BOY STUDY**

The TAC review identified some unstated assumptions in the modeling approach that should be included in the BOY Study. These include the assumption that modeled hydrology from the beginning of water year 2023 and current is consistent with actual conditions and that water in storage credited to Calleguas Municipal Water District will remain in storage. There may be other assumptions that are implicit in the modeling and other analyses in the BOY Study and these should be clearly identified and discussed in a dedicated section of the report.

#### **7.1 Recommendations:**

Clearly describe and explain the implications of assumptions in the modeling and other analyses in the BOY Study, including but not limited to the following:

- The difference between modeled and actual hydrology for the period from beginning of water year 2023 (October 2022) through the end of water year 2025 (September 2025) and briefly describe (qualitatively) the impact on interpretation of model results.
- The potential effects of recovery of water stored by Calleguas Municipal Water District on water levels, water budgets, and sustainable groundwater conditions.

**7.2 Technical Rationale for Recommendation:**

It is important for reports that include complex analysis to include documentation and discussion of the assumptions that were used and the potential implications of the assumptions on the outcome of the analyses.

**7.3 Summary of Facts in Support of Recommendation:**

A summary of facts for this recommendation is not applicable.

## **8. RECOMMENDATION 8: DISCUSS THE POTENTIAL EFFECTS OF CARRYOVER WATER ON SUSTAINABLE MANAGEMENT OF THE BASIN**

The methodology used to distribute pumping in the baseline and other model scenarios assumed that pumping was constant every year and that all active wells produced the same volume of groundwater every year. While this approach preserves the water balance and allows the model to show how hydrologic variability affects groundwater conditions, it does not allow for assessment of the impacts of highly variable changes in groundwater pumping dependent on those same hydrologic conditions. Recent groundwater use in the LPVB has been below the current Operational Yield of 40,000 AFY, which indicates that some water rights holders have been accumulating carryover water, which is common during wet years. Subsequent use of carryover water in dry years has the potential to effect groundwater sustainability and should be discussed.

**8.1 Recommendations:**

Discuss the potential effects of carryover water on sustainable management in the LPVB in light of the scenarios simulated for the BOY Study.

**8.2 Technical Rationale for Recommendation:**

Carryover is allowed by the Judgment recent historical pumping records show that some water rights holders have not used their allocations. Therefore some water rights holders are likely already accumulating carryover water that could lead to single-year groundwater production in excess of the Operational Yield, which may impact groundwater sustainability.

**8.3 Summary of Facts in Support of Recommendation:**

- Recent water use records show total pumping in the LPVB has been less than the Operational Yield.
- Some water rights holders have therefore been accumulating carryover water.
- Significant pumping in excess of the Operational Yield in a single year could occur if multiple parties elected to recover all their carryover water simultaneously.
- Pumping in excess of the Operational Yield has the potential to impact groundwater sustainability.

## **9. RECOMMENDATION 9: DOCUMENT AND DISCUSS UNCERTAINTIES IN THE MODEL RESULTS AS THEY RELATE TO THE FINDINGS OF THE BOY STUDY**

Uncertainty in model results is presented alongside some values in section 2.1 of the draft BOY Study but then not explored further when describing the project scenario simulations, Basin Optimization Yield, or rampdown scenarios. Adding discussion of uncertainty and contextualizing quantified uncertainty would help readers understand the confidence that should be placed on the projections for LPVB management based on model simulations.

### **9.1 Recommendations:**

Show quantitative estimates of uncertainties for all model simulation results, similar to those presented in section 2.1 and discuss how uncertainty should be considered in relation to project scenarios, Basin Optimization Yield, and rampdown.

### **9.2 Technical Rationale for Recommendation:**

Relatively large amounts of uncertainty are presented in section 2.1 when discussing the sustainable yield estimates from the LPVB GSP. However, similar uncertainty quantification is not presented for the model scenario simulations developed as part of the BOY Study. Understanding the uncertainty associated with the information presented in the BOY Study may be important for stakeholders and policy makers when implementing the findings of the BOY Study. This understanding may also help reinforce the need for adaptive management of projects through consistent and high-quality groundwater monitoring.

### **9.3 Summary of Facts in Support of Recommendation:**

- Quantitative uncertainty is presented for the sustainable yield estimates from the GSP but not for the yield and rampdown estimates presented in the BOY Study.
- Understanding uncertainty is important for stakeholders and policy makers.
- Documentation of uncertainty may also reinforce the need for adaptive management and consistent groundwater monitoring.

## **10. RECOMMENDATION 10: REVIEW AND CONSIDER SIGNIFICANT EDITS TO TEXT IDENTIFIED BY TAC**

There are significant text edits identified through the TAC review that should be considered by the Watermaster in preparation for finalizing the draft BOY Study. Specific recommendations are referenced below.

### **10.1 Recommendations:**

- Consider reframing the executive summary and section 6 to highlight the positive outcome that rampdown won't be necessary if the two identified projects proceed in a timely fashion and that both project and rampdown implementation will have to be adaptive processes guided by monitoring data and the required 5-year updates to the BOY Study. Suggested text for some of the revisions to the Executive Summary has been provided by Dr. Abrams and is attached.

- State in the BOY Study that simulated relative head changes are used and are deemed to be more reliable for comparing MTs to groundwater elevations. This is noted as a "shift" in hydrographs but should be more specific. Models are better at predicting head changes than they are at predicting actual heads. The second paragraph of section 1.3 might be a good place to include this information. Each instance of shifted hydrographs should also be identified in the text and on the relevant figures.
- Revise text in section 2.2 to refer to boundary *conditions* and the Somis fault as a barrier to groundwater flow as indicated in comments BA-7, 8, 9, 10, and 12 in the attached tabular comments.
- Consider including uncertainty in the presentation of sustainable yield in table 3-2 as a separate column where the uncertainty in the sustainable yield for each management area can be documented.
- Reference the Coastal Plain model uncertainty and difference between groundwater elevation observations during past in lieu water use presented in sections 2.2 and 3.1.4 when discussing assessment of model simulation results for the WLPMA in comparison to sustainability metrics. The intent would be to remind readers that the model simulated conditions at well 02N20W06R01 do not align with historical observations and that in practice sustainability in this area of the LPVB will be assessed using monitoring data and adaptive project management.
- Add explanatory text regarding the significant difference between the sustainable yield published in the First GSP Periodic Evaluation for the LPVB and the annual groundwater production rate identified in the basin-wide rampdown scenario.
- Add a table or tables in section 4 that summarize the Baseline, BOY Project, Basin-wide Rampdown, Differential Rampdown, and Sustainable Yield estimates for each management area to assist the reader in understanding the differences between the scenarios.
- Revise Conclusions to be consistent with changes to the Executive Summary and discuss all conclusions from the study. The existing Conclusions section is focused on the rampdown scenarios. All of the modeled scenarios should be discussed in this section along with reiterating that timely project implementation is shown to result in sustainable groundwater conditions without the need for basin-wide pumping reductions associated with rampdown. Suggested text for some of the revisions to the Conclusions was provided by Dr. Abrams and is attached. Also consider including a summary table of each scenario evaluated in the BOY Study in the conclusions to provide readers with context for the discussion of the conclusions.
- Develop and include a recommendations section. While the Judgment may not specifically call for recommendations, it would be prudent to include a discussion recommendations identified by the BOY Study. This should include recommendations for the rapid development of the projects identified in the BOY Study along with creation of contingency plans in case the projects are delayed or not successfully implemented, as raised in section 4. Recommendations could also include data needs, model clarifications and/or updates, and other ongoing tasks that would be prudent to consider pursuing ahead of the next update of the BOY Study.

**10.2 Technical Rationale for Recommendation:**

Technical rationale for each recommendation above is included in the context of the recommendation.

**10.3 Summary of Facts in Support of Recommendation:**

A summary of facts for this recommendation is not applicable.

## **11. RECOMMENDATION 11: REVIEW EDITORIAL COMMENTS PROVIDED BY TAC IN TABULATED COMMENT MATRIX**

The TAC members each prepared detailed tabulated comments numbered by commentor with references to specific section and page numbers and quoted text. Many of these comments are editorial in nature and identify apparent errors in the draft BOY Study, including typographic errors and unclear text.

**11.1 Recommendations:**

Consider revising the text to address the comments identified as editorial and clarification in the attached tabular comment matrix.

**11.2 Technical Rationale for Recommendation:**

See individual editorial comments for rationale.

**11.3 Summary of Facts in Support of Recommendation:**

A summary of facts for this recommendation is not applicable.

## **12. TALLY OF COMMITTEE MEMBER VOTES**

[this section will be modified as necessary following discussion and voting by the TAC]

| TAC Member                           | Vote |    |         |        |
|--------------------------------------|------|----|---------|--------|
|                                      | Yes  | No | Abstain | Absent |
| Chad Taylor, Chair                   |      |    |         |        |
| Tony Morgan, East LPV Representative |      |    |         |        |
| Bob Abrams, West LPV Representative  |      |    |         |        |

## **REPORT OF BASES FOR MAJORITY AND MINORITY COMMITTEE MEMBER POSITIONS**

The TAC vote to present the recommendations above to the Watermaster was unanimous, as indicated above. The bases for the unanimous positions are described for each recommendation above. [this will be modified as necessary following discussion and voting by the TAC]

## **Attachment 1**

### **Specific Comments from the Las Posas Valley Basin Technical Advisory Committee, Draft Basin Optimization Yield Study**

## Specific Comments from the Las Posas Valley Basin Technical Advisory Committee

### Draft Basin Optimization Yield Study

| Comment ID | Commentor   | Technical or Editorial Comment | Topic                                                    | Page Number    | Section ID                           | Quoted Text                                                                                                                                                                                                                              | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|-------------|--------------------------------|----------------------------------------------------------|----------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BB-1       | Bryan Bondy | Editorial                      | Clarification                                            | 5              | 2.1                                  | <i>"CMWD no longer maintains the ELP Model but has provided this model to FCGMA to support management of the Basin."</i>                                                                                                                 | Calleguas has not made a decision to stop maintaining the model.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BB-2       | Bryan Bondy | Editorial                      | Editorial                                                | 7              | 3.1.2                                | <i>"Of course, the exact future hydrology is unknown. Therefore, the synthetic future hydrology is a source of uncertainty in any future model simulations."</i>                                                                         | Standalone sentence - should it be included in the prior paragraph?                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BB-3       | Bryan Bondy | Editorial                      | Editorial                                                | 12, 13, and 16 | 3.2.3.1 & Tables 3-2 and 3-3         | N/A                                                                                                                                                                                                                                      | Baseline groundwater production value for Epworth Gravels Mgmt. Area listed in text does not match value in Tables 3-2 and 3-3.                                                                                                                                                                                                                                                                                                                                                                         |
| BB-4       | Bryan Bondy | Editorial                      | Editorial                                                | 15 and 16      | 3.3.1 & Table 3-3                    | N/A                                                                                                                                                                                                                                      | Groundwater production values for ELPMA and WLPMA listed in text do not match values in Table 3-3.                                                                                                                                                                                                                                                                                                                                                                                                      |
| BB-5       | Bryan Bondy | Editorial                      | Editorial                                                | v              | N/A                                  | <i>Second paragraph, first sentence "...that provided quantifiable groundwater at a level of detail that could be included in the model."</i>                                                                                            | Groundwater what? Levels, flow, budgets?                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BB-6       | Bryan Bondy | Technical                      | Analysis Assumptions                                     | 7              | 3.1.2                                | N/A                                                                                                                                                                                                                                      | An unstated assumption of the modeling approach is that the modeled hydrology between 10/1/22 and now is identical to that which has actually occurred. Consider qualitatively describing the difference between modeled and actual hydrology for this period and briefly describe (qualitatively) the impact on interpretation of the results.                                                                                                                                                         |
| BB-7       | Bryan Bondy | Technical                      | Analysis Assumptions                                     | 8              | 3.1.3                                | N/A                                                                                                                                                                                                                                      | An unstated assumption of the modeling approach is that water in storage credited to Calleguas MWD by FCGMA will remain in storage. Should this water be recovered, water levels would be lower than simulated and minimum thresholds may not be achieved. Consider describing this (qualitatively) for context.                                                                                                                                                                                        |
| BB-8       | Bryan Bondy | Technical                      | Clarification                                            | v & 1          | ES, 2nd paragraph & 1, 2nd paragraph | N/A                                                                                                                                                                                                                                      | It is unclear how the Arroyo Simi-Las Posas water acquisition project (Basin Optimization Plan Project 5) was included in the various simulations. Please clarify in text and add a simple table that lists the amount of surface water that was simulated to enter the model domain via the SFR package from Simi Valley for each simulation.                                                                                                                                                          |
| BB-9       | Bryan Bondy | Technical                      | Epworth Gravels Mgmt. Area                               | Various        | Various                              | N/A                                                                                                                                                                                                                                      | It is stated on page 13 that the sustainable production rate for the Epworth Gravels Mgmt. Area is 1,320 AFY. The baseline Epworth Gravels Mgmt. Area extractions were less than this (1,024 AFY). Given this, please explain why the Epworth Gravels Mgmt. Area extractions were reduced in the rampdown scenarios. Please also caveat the rampdown to alert policymakers to the fact that it appears that Epworth Gravels Mgmt. Area rampdown does not appear necessary from a technical perspective. |
| BB-10      | Bryan Bondy | Technical                      | Epworth Gravels Mgmt. Area                               | 13             | 3.2.3.1                              | <i>"not all groundwater producers with wells in the Epworth Gravels Management Area received an allocation in the Judgment (Figure 3-4)."</i>                                                                                            | Two comments. (1) Estimates of Epworth Gravels Mgmt. Area extractions that are not included in the analysis should be provided (i.e. groundwater producers w/o a Judgment allocation) for context. This can be estimated from historical extractions reported to FCGMA. (2) Is the Epworth Gravels Management Area the only management area that has groundwater producers w/o a Judgment allocation? If no, estimates should also be provided for those management areas for context.                  |
| BB-11      | Bryan Bondy | Technical                      | Epworth Mgmt Area Sustainable Yield vs. Rampdown Pumping | 18             | 3.4.1.1                              | <i>"The estimated sustainable yields of the Epworth Gravels Management Area and the ELPMA were approximately 500 and 1,450 AFY higher, respectively, than the simulated groundwater production in the Basin-wide Rampdown scenario."</i> | This difference for Epworth Gravels Mgmt Area is significant on a percentage basis. Text should be added to explain why this large of a difference exists.                                                                                                                                                                                                                                                                                                                                              |
| BB-12      | Bryan Bondy | Technical                      | Projects and Rampdown                                    | v and 26-27    | ES and 6                             | N/A                                                                                                                                                                                                                                      | Please add more text to remind the reader that implementation of either projects or rampdown would be an adaptive process that is guided by monitoring data and the required 5-year updates to this document.                                                                                                                                                                                                                                                                                           |

## Specific Comments from the Las Posas Valley Basin Technical Advisory Committee

### Draft Basin Optimization Yield Study

| Comment ID | Commentor   | Technical or Editorial Comment | Topic                                        | Page Number | Section ID | Quoted Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|-------------|--------------------------------|----------------------------------------------|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BB-13      | Bryan Bondy | Technical                      | Rampdown Rate                                | N/A         | 5          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | It appears that the rampdown rates are based on an assumption that the amount of surface water entering ELPMA from Simi Valley will not change even if the Arroyo Simi-Las Posas water acquisition project (Basin Optimization Plan Project 5) is not executed. This should be made clear in the text and the rampdown rate should be caveated accordingly.                                                                                                                                                      |
| BB-14      | Bryan Bondy | Technical                      | Rampdown Rate                                | 18          | 3.4.1.1    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Please clarify how rampdown was simulated in the rampdown model scenarios. It is unclear whether pumping at that the fully reduced rate was used for the entire rampdown period or if pumping was reduced incrementally each year during the rampdown period. If it is the former, the results should be caveated because the model scenario may be underestimating pumping and the resulting simulated groundwater levels may be overestimated.                                                                 |
| BB-15      | Bryan Bondy | Technical                      | Recommendations                              | N/A         | N/A        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | There is no recommendations section. While the Judgment may not specifically call for recommendations, it would be prudent to include a discussion of data needs, model clarifications/updates, etc. that would be prudent to consider pursuing ahead of the next update of this document.                                                                                                                                                                                                                       |
| BB-16      | Bryan Bondy | Technical                      | Technical                                    | 16          | 3.3.2.1    | <i>"Although the groundwater elevation at the third well, Well 02N20W06R01, remained below the minimum threshold during the Projects Scenario, the groundwater elevation at the end of the scenario was similar to the elevation at the start of the scenario. This suggests that if the initial groundwater elevation can be raised at this well, ongoing production at the rates simulated in the Projects Scenario will maintain the groundwater elevation in the future."</i> | This text is unclear. What is meant by "if the initial groundwater elevation can be raised at this well"? How would this initial groundwater level increase be achieved? Would it be more appropriate to say that the simulated groundwater elevations are close to the MT and that is reasonable to conclude that the MT could be achieved consistently when considering uncertainty in the WLPMA model?                                                                                                        |
| BB-17      | Bryan Bondy | Technical                      | WLPMA Sustainable Yield vs. Rampdown Pumping | 18          | 3.4.1.1    | <i>"The estimated sustainable yield of the WLPMA in the First Periodic Evaluation was approximately 3,300 AFY lower than the simulated groundwater production in the Basin-wide Rampdown scenario."</i>                                                                                                                                                                                                                                                                           | This is significant difference. Text should be added to explain why this large of a difference exists.                                                                                                                                                                                                                                                                                                                                                                                                           |
| TM-1       | Tony Morgan | General Editorial              | spell out abbreviation                       | 1           | 1.1        | LPV Judgment                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | first use of Las Posas Valley so spell out abbreviation - Las Posas Valley (LPV) Judgment                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TM-2       | Tony Morgan | General Editorial              | spell out abbreviation                       | 5           | 2          | ELP Model; a MODFLOW numerical model...                                                                                                                                                                                                                                                                                                                                                                                                                                           | first use of ELP - spell out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TM-3       | Tony Morgan | General Technical              | model uncertainty                            | 5           | 2.1        | <i>uncertainty bounds in the sustainable yield ...estimated using the ELP Model of ±2,300 AFY...</i>                                                                                                                                                                                                                                                                                                                                                                              | the ±2,300 AFY uncertainty (on an ~18,000 AFY yield) is significant – on the order of 13% – which directly affects confidence in the BOY and rampdown values                                                                                                                                                                                                                                                                                                                                                     |
| TM-4       | Tony Morgan | Technical                      | model uncertainty                            | 6           | 2.1        | <i>...uncertainty bounds in the sustainable yield for the WLPMA estimated using the GSP version of the VRGWF of ±1,200 AFY...</i>                                                                                                                                                                                                                                                                                                                                                 | How is the model uncertainty considered in the analyses?                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TM-5       | Tony Morgan | Technical                      | sustainable yield uncertainty                | 22          | 4          | <i>...model scenarios simulated for this BOY Study the Basin Optimization Yield is estimated to be 36,860 AFY if the in-lieu surface water delivery projects are implemented...</i>                                                                                                                                                                                                                                                                                               | How is the model uncertainty reflected in this value? Is it 36,860 AFY+/- the uncertainty?                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TM-6       | Tony Morgan | Technical                      | rampdowns                                    | 24          | 5.2        | <i>...scenario groundwater production was reduced by 20% relative to the Baseline Scenario pumping in the WLPMA...</i>                                                                                                                                                                                                                                                                                                                                                            | It is recognized that the model used for WLPMA under predicts WLs for the Key Wells. If a 20% rampdown is needed per the model to ultimately get WLs above the MT, isn't it logical to assume that a lesser rampdown could achieve comparable results when the WLs are corrected for the under prediction tendencies of the model? It didn't seem like the underprediction was accounted for, at least semiquantitatively, in the analyses. Is the report suggesting a rampdown quantity that is too aggressive? |

## Specific Comments from the Las Posas Valley Basin Technical Advisory Committee

### Draft Basin Optimization Yield Study

| Comment ID | Commentor   | Technical or Editorial Comment | Topic                                   | Page Number | Section ID | Quoted Text                                                                                                                                                                                                                                                                                    | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|-------------|--------------------------------|-----------------------------------------|-------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TM-7       | Tony Morgan | Technical                      | conclusions                             | 26          | 6          | <i>Conclusion</i>                                                                                                                                                                                                                                                                              | why does the Conclusion section focus solely on the ramp-down scenarios? Per Section 1, <i>the BOY Study evaluates groundwater conditions under three potential future production scenarios: (1) continued production at 40,000 acre-feet per year (AFY), the initial Operating Yield defined in the Judgment, (2) implementation of two groundwater in-lieu projects evaluated in the Basin Optimization Plan (BOP), and (3) a ramp-down scenario to determine the BOY in the event that the projects are not implemented..</i> Discussions of all three scenarios should be included in the Conclusions. Isn't the major take-away message that if the in-lieu delivery projects can be implemented promptly, then ramp-downs are not likely to be needed? Don't bury (or omit) the lead message. |
| TM-8       | Tony Morgan | Technical                      | conclusions                             | 26          | 6          |                                                                                                                                                                                                                                                                                                | It would be useful to the reader to have a summary table for each of the scenarios evaluated in the report. There are lots of numbers in the document. A summary in the conclusions makes it easier to compare the scenario outcomes. Suggest a table (with supporting text) that lists for each key well when each scenario brings water levels above the MT, is the MT achieved before 2040, water level trends (up or down), do water level trends suggest that MO will be met, etc.                                                                                                                                                                                                                                                                                                             |
| TM-9       | Tony Morgan | Technical                      | possible typo                           | 7           | 3.1.1      | <i>The future scenarios developed for the BOY Study simulate groundwater conditions in the Basin over the 47-year...</i>                                                                                                                                                                       | reference to a "37-year modeled period" for trends in section 3.4.2.2 – this appears to be a typo, since the scenarios run 47 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TM-10      | Tony Morgan | Technical                      | timing of project implementation        | 8           | 3.1.3      | <i>Table 3-1</i>                                                                                                                                                                                                                                                                               | Table 3-1 indicates Time Period for Implementation as "Water Year 2027", but does not specifically identify when in WY2027 the water deliveries were initiated in the model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TM-11      | Tony Morgan | Technical                      | timing of project implementation        | 8           | 3.1.3      | <i>...the in-lieu project deliveries are not currently occurring. If implementation of the in-lieu project is delayed for multiple years, the modeled impacts of the project on groundwater levels in this BOY Study may 'overestimate the impact of this project...</i>                       | since these projects depend on agencies outside the Watermaster's direct control, there is uncertainty in their yield and timing. The study already notes no agreements are signed yet. It might be prudent to recommend contingency planning ( e.g., if by year X the projects are behind schedule, implement phased rampdowns to compensate). This is hinted in Section 4 (if Project 2 is not fully implemented, consider a Rampdown), which is a good inclusion.                                                                                                                                                                                                                                                                                                                                |
| TM-12      | Tony Morgan | Technical                      | SGMA compliance                         | 9           | 3.1.4      | <i>...in the WLPMA, the long-term groundwater production rate was determined to be potentially sustainable if groundwater elevations remained stable over the future model period, such that the ending groundwater level was equal to or higher than the starting groundwater elevation."</i> | an additional criterion is used: a pumping rate is considered potentially sustainable if groundwater levels <b>stabilize or rise over the future period</b> , even if they start (and end) below the MT. It's important to highlight the risk of allowing "stable but below-threshold" conditions, even temporarily, technically means undesirable results (as defined in the GSP) persist until those levels rise above MT. The study implies that with projects or rampdown, those key wells might not reach MT by 2040 but could soon after.                                                                                                                                                                                                                                                     |
| TM-13      | Tony Morgan | Technical                      | Baseline Scenario extractions           | 10          | 3.2.2      | <i>...the selected approach, with which the TAC concurred, was to distribute the Annual Allocation based on the reported pumping and MWC deliveries for DWR water year 2024...</i>                                                                                                             | The distribution method ensures every drop of the 40,000 AFY is assigned to a specific well or MWC, preserving the water balance, and does so in a way that reflects current (2024) usage patterns. The model does not account for underutilization (which has occurred in the past couple of years) which results in carryover amounts that can have an as yet unmodeled impact on future water levels. The baseline scenario is logical, however, it would be useful to be more forthcoming with the shortcomings of the scenario assumptions as predictors of future conditions.                                                                                                                                                                                                                 |
| TM-14      | Tony Morgan | General Technical              | modeling assumptions                    | 10          | 3.2.2      |                                                                                                                                                                                                                                                                                                | The modeling approach could be more robust by accounting for the carryover amounts earned in the wet periods and their use in subsequent dry periods. For example, assume carryover was earned in "above normal wet years" at a rate consistent with GW use in recent wet years. The carryover would be used in dry years when irrigated water demand is greater than the average. It is not clear how this would impact efforts to bring GW levels above the MT, but it would offer a more likely scenario for how the basin would operate.                                                                                                                                                                                                                                                        |
| TM-15      | Tony Morgan | Technical                      | estimated sustainable yield uncertainty | 12          | 3.2.2.2    | <i>Table 3-2 Estimated Sustainable Yield</i>                                                                                                                                                                                                                                                   | shouldn't the sustainable yield be +/- the uncertainty? Suggest adding another column to show the possible range of the sustainable yield OR put the range in parentheses in the same cell as the Estimated Sustainable Yield. For example, WLPMA Estimated Sustainable Yield is 11,400 (10,200-12,600), ELPMA + EG is 19,230 (16,930-21,530). LPVB sustainable yield is 30,630 (27,137-34,130).                                                                                                                                                                                                                                                                                                                                                                                                    |

## Specific Comments from the Las Posas Valley Basin Technical Advisory Committee

### Draft Basin Optimization Yield Study

| Comment ID | Commentor   | Technical or Editorial Comment | Topic                                                               | Page Number | Section ID        | Quoted Text                                                                                                                                                                                                                                    | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|-------------|--------------------------------|---------------------------------------------------------------------|-------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TM-16      | Tony Morgan | Technical                      | in lieu amounts                                                     | 17          | 3.2.2.2           | <i>...the LAS groundwater production was reduced by 1,760 AFY to simulate implementation of the in-lieu surface water delivery project to Zone MWC and VCWW 19."</i>                                                                           | Is the in lieu delivery amount being overestimated because the WLPMA model under predicts WL responses to imported water? Could a lesser in lieu amount achieve the same result if the model's WLs were adjusted to account for the underprediction?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TM-17      | Tony Morgan | Technical                      | possible typo                                                       | 15          | 3.3.1             | <i>The resulting groundwater production rates were 16,656 AFY in the WLPMA and 16,420 AFY in the ELPMA (Table 3-3).</i>                                                                                                                        | Table 3-3 shows ELPMA pumping as 19,179 AFY in the Projects scenario, but 16,420 AFY in text. Looks like the text should be changed to 19,179 AFY which is consistent with modeled ~7% reduction. Similar for WLPMA - Table 3-3 shows 16,657 AFY, text says 16,656 AFY- likely typo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TM-18      | Tony Morgan | Technical                      | estimated sustainable yield uncertainty                             | 16          | 3.3.1             | <i>Table 3-3</i>                                                                                                                                                                                                                               | how is model uncertainty accounted for in this table?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TM-19      | Tony Morgan | Technical                      | SGMA compliance                                                     | 16          | 3.3.2             | <i>...if the initial groundwater elevation can be raised at this well, ongoing production at the rates simulated in the Projects Scenario will maintain the groundwater elevation in the future.</i>                                           | WLPMA meets the softer criterion (stable levels at the problematic well). From a hydrogeologic standpoint, the in-lieu deliveries clearly mitigate drawdown in the targeted areas. It just flags one gap - one location still below threshold, requiring either trust in model correction of flow across Somis fault or additional management.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TM-20      | Tony Morgan | Technical                      | SGMA compliance                                                     | 19          | 3.4.1.2           | <i>In the WLPMA, simulated groundwater elevations remained above the minimum threshold groundwater elevation at two of three Key Wells...</i>                                                                                                  | The 20% reduction predicted water levels would remain below the MT in one Key Well. So, a 20% reduction is not actually consistent with SGMA goals of avoiding undesirable results. It is unknown if this "modified approach" to SGMA compliance is acceptable to DWR. Report states that model response is "...dampened relative to historical observations" therefore, groundwater elevations in this well are expected to be above the MT. What happens to the groundwater elevations in the other key wells if we account for the "dampened response"? Are we suggesting that a rampdown of some amount less than 20% is adequate if the dampened response is accounted for? If so, why not present the model results for that lower value? Does the use of a 20% rampdown put unnecessarily stringent cuts on ELPMA & Epworth? |
| TM-21      | Tony Morgan | Technical                      | rampdowns                                                           | 20          | 3.4.2.1           | <i>...it should be noted that simulated groundwater elevations exhibited a declining trend over the 37-year modeled period."</i>                                                                                                               | under the 11% cut, ELPMA is still <i>mildly overdrafting</i> , which is consistent with the note that water levels in ELPMA show a declining trend over the 47-year simulation (albeit all above MT). Is the declining trend over the SGMA compliance timeframe consistent with SGMA compliance requirements?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TM-22      | Tony Morgan | General Editorial              | add PVB, LPV, ELP, WMID to list of abbreviations                    | iii         |                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TM-23      | Tony Morgan | General Technical              | Somis fault/model boundaries                                        |             |                   |                                                                                                                                                                                                                                                | The WLPMA model has assigned properties to the Somis fault that are inconsistent with current hydrogeologic understanding. Before the next BOYS or Periodic Evaluation update, it is recommended that the model be updated to reflect our hydrogeologic conceptual model. This allows the forward forecasts to be used without having to consider the "dampened results" correction factor.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BA-1       | Bob Abrams  | Technical                      | Setting the tone of the report (that the report presents good news) | v           | Executive Summary |                                                                                                                                                                                                                                                | Overall, the BOYS study and report present good news that rampdown won't be necessary if the two projects proceed in a timely fashion. Suggest revising the Executive Summary to highlight this and support better understanding of terms in the Judgment, such Operating Yield, etc. Please see accompanying Word file that presents my suggested revisions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BA-2       | Bob Abrams  | Editorial                      | Conforming main text to suggested revised Executive Summary         | v           | Executive Summary |                                                                                                                                                                                                                                                | Left to Dudek to revise main text to hit the highlights noted in the suggested revised Executive Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BA-3       | Bob Abrams  | Editorial                      | Delete unneeded comma                                               | 3           | 1.3               | <i>Undesirable results were defined in the GSP for the three management areas of the Basin: the East Las Posas Management Area (ELPMA), the Epworth Gravels Management Area, and the West Las Posas Management Area (WLPMA), (FCGMA 2019).</i> | Delete identified comma (in red)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## Specific Comments from the Las Posas Valley Basin Technical Advisory Committee

### Draft Basin Optimization Yield Study

| Comment ID | Commentor  | Technical or Editorial Comment | Topic                                                                                                                          | Page Number | Section ID | Quoted Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Comment                                                                                                                                                                                                                                                                                                                                                    |
|------------|------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BA-4       | Bob Abrams | Technical                      | Use of modeled heads for MT metric versus head changes (i.e., the "shift" used in hydrographs)                                 | 3           | 1.3        | <i>Because the MTs are the metric by which groundwater conditions in the Basin are determined to be sustainable, the BOY Study compares simulated future groundwater elevations in the Basin to the MTs at the Key Wells in the Basin. Future groundwater elevations were simulated using the two numerical groundwater models that cover the three management areas of the Basin. Simulated production rates that result in long-term stability of the groundwater elevations at levels above the MTs are considered sustainable. The Basin Optimization Yield is the production rate, with implementation of the Basin Optimization Projects that can be reasonably implemented by 2040 and maintains groundwater elevations above the MTs.</i> | Somewhere in the main text it should be stated that simulated relative head changes are used to compare to MTs for groundwater elevations. This is noted as a "shift" in hydrographs, but should be more specific. Models are better at predicting head changes than they are at predicting actual heads. This paragraph might be a good place to do that. |
| BA-5       | Bob Abrams | Editorial                      | Inconsistent use of acronyms                                                                                                   | 5           | 2          | <i>Coastal Plain Model: a version of the Ventura Regional Groundwater Flow Model (VRGFM) MODFLOW numerical model developed and maintained by UWCD, which covers the entirety of the WLPMA, Oxnard Subbasin, PVB, and Mound Subbasin (UWCD 2018).</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ventura Regional Groundwater Flow Model is sometimes abbreviated as VRGFM and sometimes as VRGWFM. Be consistent.                                                                                                                                                                                                                                          |
| BA-6       | Bob Abrams | Editorial                      | Delete unneeded word                                                                                                           | 5           | 2          | <i>Therefore, the only change FCGMA made to the model for the First Periodic Evaluation was to extend the simulation <b>time</b> period through the end of water year 2022 (i.e., September 30, 2022) (FCGMA 2024</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Delete the word "time" (in red)                                                                                                                                                                                                                                                                                                                            |
| BA-7       | Bob Abrams | Technical                      | Model "boundary" and modeled "boundary condition" are not the same thing and cannot be used interchangeably                    | 6           | 2.2        | <i>Although the Coastal Plain Model included improved hydrogeologic conceptual model data in several groundwater basins, the update also included a revision to the model boundary at the eastern edge of the WLPMA.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Revise to:<br>Although the Coastal Plain Model included improved hydrogeologic conceptual model data in several groundwater basins, the update also included a revision to the model boundary <b>condition</b> at the eastern edge of the WLPMA.                                                                                                           |
| BA-8       | Bob Abrams | Technical                      | Somis Fault is observed to be a flow barrier; should emphasize that this is an observation and not a model phenomenon          | 6           | 2.2        | <i>In previous versions of the model, the boundary between the ELPMA and WLPMA was represented using a no-flow boundary condition, which is consistent with the Somis Fault acting as a barrier to groundwater flow between the two management areas (FCGMA 2019).</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Revise to:<br>In previous versions of the model, the boundary between the ELPMA and WLPMA was represented using a no-flow boundary condition, which is consistent with <b>the observation that the Somis Fault acts as a barrier to groundwater flow</b> between the two management areas (FCGMA 2019).                                                    |
| BA-9       | Bob Abrams | Technical                      | Model "boundary" and modeled "boundary condition" are not the same thing and cannot be used interchangeably                    | 6           | 2.2        | <i>In contrast, the model boundary in the version of the model used in the First Periodic Evaluation and in this BOY Study is a general head boundary <b>condition</b> ...</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Insert the word "condition" as indicated in red.<br>THERE ARE also two other instances in the next paragraph to insert the word "condition." One is noted in next comment along with suggested change in wording.                                                                                                                                          |
| BA-10      | Bob Abrams | Technical                      | Model "boundary" and modeled "boundary condition" are not the same thing and cannot be used interchangeably, and clarification | 6           | 2.2        | <i>...simulated groundwater elevations do not rise as rapidly in response to reduced groundwater production as they would if the model boundary were a no-flow boundary.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Revise to:<br>...simulated groundwater elevations do not rise as rapidly in response to reduced groundwater production as they would if the model boundary <b>condition had not been changed from a no-flow boundary to a general head boundary. they would if the model boundary</b>                                                                      |
| BA-11      | Bob Abrams | Technical                      | Missing or extra words                                                                                                         | 6           | 2.2        | <i>This rise is similar to that measured in the historical data between 1994 and 2006, when CMWD was delivering imported water in-lieu groundwater delivery to WLPMA</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Revise to:<br>This rise is similar to that measured in the historical data between 1994 and 2006, when CMWD was delivering imported water in lieu <b>of local groundwater pumping to the in-lieu groundwater delivery to WLPMA</b>                                                                                                                         |

## Specific Comments from the Las Posas Valley Basin Technical Advisory Committee

### Draft Basin Optimization Yield Study

| Comment ID | Commentor  | Technical or Editorial Comment | Topic                                                                                                                          | Page Number | Section ID | Quoted Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BA-12      | Bob Abrams | Technical                      | Model "boundary" and modeled "boundary condition" are not the same thing and cannot be used interchangeably, and clarification | 7           | 2.2        | <i>The comparison of the observed historical change in groundwater elevation to the modeled change in groundwater elevation indicates that the model boundary change has introduced additional uncertainty into the predictive capabilities of the model in this region. Future work should be conducted to reduce this uncertainty by recalibrating the revised model using a no-flow boundary to better represent the hydrogeologic conceptual model of this area.</i>                                                           | Revise to:<br>The comparison of the observed historical change in groundwater elevation to the modeled change in groundwater elevation indicates that <b>UWCD's change to the model boundary condition between the WLPMA and ELPMA model boundary change</b> has introduced <b>errors and additional uncertainty</b> into the predictive capabilities of the model in this region. Future work should be conducted to <b>fix this error and reduce this uncertainty</b> by recalibrating the revised model using a no-flow boundary <b>condition to better represent the hydrogeologic conceptual model of this area.</b> |
| BA-13      | Bob Abrams | Editorial                      | Grammer                                                                                                                        | 7           | 2.2        | <i>Watermaster and TAC agreed that, while the change in the model boundary is not consistent with the hydrogeologic conceptual model, groundwater management decisions will be based on observed water levels, rather than model simulation.</i>                                                                                                                                                                                                                                                                                   | Change to "simulations"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BA-14      | Bob Abrams | Editorial                      | Run-on sentence                                                                                                                | 7           | 2.2        | <i>Because the UWCD model is capable of simulating groundwater elevations in the eastern portion of the WLPMA that rise above the minimum threshold prior to 2040 and remain above the minimum threshold from 2040 to 2070, use of the UWCD model files developed for the Periodic Evaluation remains the best available option to evaluate the BOY and complete this first BOY study prior to the beginning of the 2027 water year (October 1, 2026 – September 30, 2027) (FCGMA 2025b).</i>                                      | Change to:<br>The UWCD model is capable of simulating groundwater elevations in the eastern portion of the WLPMA that rise above the minimum threshold prior to 2040 and remain above the minimum threshold from 2040 to 2070. <b>Thus, the</b> use of the UWCD model files developed for the Periodic Evaluation remains the best available option to evaluate the BOY and complete this first BOY study prior to the beginning of the 2027 water year (October 1, 2026 – September 30, 2027) (FCGMA 2025b)                                                                                                              |
| BA-15      | Bob Abrams | Editorial                      | Needs additional clarification                                                                                                 | 8           | 3.1.3      | <i>The Arroyo Simi-Las Posas Water Acquisition project would involve the purchase or lease of recycled water from the City of Simi Valley to continue discharging the water from its shallow dewatering wells and/or the Simi Valley Water Quality Control Plant to the Arroyo Simi for downstream recharge to the Basin (FCGMA 2025a).</i>                                                                                                                                                                                        | Need a statement as to why this water can't continue without purchasing or leasing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BA-16      | Bob Abrams | Editorial                      | Needs additional clarification                                                                                                 | 10          | 3.1.4      | <i>However, the updated Coastal Plain Model did not reproduce the same magnitude of groundwater elevation response as was observed historically (Figure 2-1). Therefore, project implementation and adjustment through groundwater elevation monitoring are expected to bring groundwater elevations back above the MT. Once the groundwater elevations are higher than the MT, a long-term production rate that results in stable groundwater elevations that remain above the MT is sufficient to avoid undesirable results.</i> | Revise to:<br>However, the updated Coastal Plain Model did not reproduce the same magnitude of groundwater elevation response as was observed historically (Figure 2-1). Therefore, project implementation and adjustment <b>of in-lieu delivery rates driven by through</b> groundwater elevation monitoring are expected to bring groundwater elevations back above the MT. Once the groundwater elevations are higher than the MT, a long-term production rate <b>can be determined</b> that results in stable groundwater elevations that remain above the MT is sufficient to avoid undesirable results.             |
| BA-17      | Bob Abrams | Technical                      | Needs additional clarification                                                                                                 | 10          | 3.1.4      | <i>Based on these results, a simulated groundwater flux of 800 AFY or less across the boundary between Oxnard Subbasin and the WLPMA was considered sustainable in this BOY Study.</i>                                                                                                                                                                                                                                                                                                                                             | Which direction? Should state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BA-18      | Bob Abrams | Editorial                      | Grammer                                                                                                                        | 10          | 3.2.1      | <i>Additionally, some agricultural properties that historically reported extractions did not receive allocation.</i>                                                                                                                                                                                                                                                                                                                                                                                                               | Insert the word "an":<br>Additionally, some agricultural properties that historically reported extractions did not receive <b>an</b> allocation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## Specific Comments from the Las Posas Valley Basin Technical Advisory Committee

### Draft Basin Optimization Yield Study

| Comment ID | Commentor   | Technical or Editorial Comment | Topic                          | Page Number | Section ID | Quoted Text                                                                                                                                                                                                                                                                                                                                                                       | Comment                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|-------------|--------------------------------|--------------------------------|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BA-19      | Bob Abrams  | Technical                      | Terminology                    | 10          | 3.2.1      | <i>Because the BOY Study is intended to assess the ability of projects to maintain the BOY at as close to 40,000 AFY as possible, and to evaluate the need for a Rampdown relative to the Basin Optimization Yield, this BOY Study used the Water Year 2024 Annual Allocations published by the Watermaster as the basis for extractions in the numerical groundwater models.</i> | Revise to:<br>Because the <b>2025</b> BOY Study is intended to assess the ability of projects to maintain the BOY at as close to 40,000 AFY as possible, and to evaluate the need for a Rampdown relative to the Initial Operating <b>Basin Optimization</b> Yield, this BOY Study used the Water Year 2024 Annual Allocations published by the Watermaster as the basis for extractions in the numerical groundwater models |
| BA-20      | Bob Abrams  | Technical                      | Wording                        | 12          | 3.2.2.2    | <i>The differences between the Baseline Scenario production rate and the average groundwater production from water years 2016 to 2024 are shown in Figure 3-4.</i>                                                                                                                                                                                                                | Should state explicitly if these differences are increases or decreases, here and on Figure 3-4. e.g., text could say increases and decreases are shown on Figure 3-4. Figure legend could indicate which ranges equate to increases and which to decreases.                                                                                                                                                                 |
| BA-21      | Bob Abrams  | Technical                      | Clarification                  | 13          | 3.2.3.1    | <i>If, during water year 2024, these Water Right Holders pumped less than average from the Epworth Gravels Management Area wells, the baseline pumping distribution in the BOY Study Baseline Scenario</i>                                                                                                                                                                        | There should be some kind of text explaining that this is unavoidable and HOW THIS WILL be accounted for in the Operating Yield/                                                                                                                                                                                                                                                                                             |
| BA-22      | Bob Abrams  | Technical                      | Clarification                  | 13          | 3.2.3.1    | <i>Groundwater production at the Baseline Scenario rates was determined not to be sustainable in the ELPMA because simulated groundwater elevations at five Key Wells fell below the minimum threshold groundwater during the 47-year model run (Figure 3-6).</i>                                                                                                                 | Were these simulated hydrographs also shifted, as in Figure 3-5. If so there should be a note on the figure. Also, I think you need to say somewhere in the main text that you have more faith in simulated groundwater <u>changes</u> , than simply the simulated elevations.                                                                                                                                               |
| BA-23      | Bob Abrams  | Technical                      | Clarification                  | 15          | 3.3.1      | <i>As discussed in Section 3.1.3, the Projects Scenario incorporated 1,760 AFY of surface water deliveries to offset groundwater production from <b>six</b> wells in the eastern WLPMA, and 1,380 AFY of surface water deliveries to offset production from <b>three</b> wells in the ELPMA.</i>                                                                                  | Which six wells? Which three wells?                                                                                                                                                                                                                                                                                                                                                                                          |
| BA-24      | Bob Abrams  | Technical                      | Interpretation of the Judgment | 18          | 3.4.1.1    | <i>The total extraction rate for the Basin-wide Rampdown Scenario was 32,000 AFY (Table 3-3).</i>                                                                                                                                                                                                                                                                                 | However, the Rampdown should be the Initial Operating Yield minus the BOY, or 40,000 acre-feet per year (AFY) minus 36,860 AFY. Accordingly, the Rampdown should be 3,140 AF, or approximately 224 AFY over the 14-year period between now and 2040. Further, my understanding is that the Judgment does not contemplate a no-project Rampdown or Rampdown Rate.                                                             |
| BA-25      | Bob Abrams  | Technical                      | Clarification                  | 24          | 5.1        | <i>Consistent with the Judgment, this initial BOY Study calculates a Rampdown Rate for a Basin-wide reduction in groundwater pumping if the projects are not implemented. The Rampdown Rate is the annual reduction in groundwater necessary to have the Operating Yield equal the Sustainable Yield by the fall of 2039 (Judgment §§1.89 and 4.10.1.4).</i>                      | Insert the word "production" as indicated in red:<br>Consistent with the Judgment, this initial BOY Study calculates a Rampdown Rate for a Basin-wide reduction in groundwater pumping if the projects are not implemented. The Rampdown Rate is the annual reduction in groundwater <b>production</b> necessary to have the Operating Yield equal the Sustainable Yield by the fall of 2039 (Judgment §§1.89 and 4.10.1.4). |
| BA-26      | Bob Abrams  | Technical                      | Interpretation of the Judgment | 24          | 5.1        |                                                                                                                                                                                                                                                                                                                                                                                   | As noted above, the Rampdown should be the Initial Operating Yield minus the BOY, or 40,000 acre-feet per year (AFY) minus 36,860 AFY. Accordingly, the Rampdown should be 3,140 AF, or approximately 224 AFY over the 14-year period between now and 2040. Further, my understanding is that the Judgment does not contemplate a no-project Rampdown or Rampdown Rate.                                                      |
| BA-27      | Bob Abrams  | Technical                      | Clarification                  | 26          | 6          |                                                                                                                                                                                                                                                                                                                                                                                   | Suggest revising conclusions based on the suggested revisions to the Executive Summary. Please see accompanying Word file that presents my suggested revisions to the Conclusions section.                                                                                                                                                                                                                                   |
| CT-1       | Chad Taylor | Editorial                      | Error                          | 3           | 1.3        | <i>The Rampdown was calculated over a 13-year period...</i>                                                                                                                                                                                                                                                                                                                       | The rampdown period is identified as 14 years in other sections.                                                                                                                                                                                                                                                                                                                                                             |
| CT-2       | Chad Taylor | Editorial                      | Missing footnote/endnote       | 3           | 1.3        | <i>...(DWR water year 2027 through water year 2039<sup>1</sup> )...</i>                                                                                                                                                                                                                                                                                                           | There is no footnote or endnote corresponding to the note identified in the second to last paragraph on page 3.                                                                                                                                                                                                                                                                                                              |

## Specific Comments from the Las Posas Valley Basin Technical Advisory Committee

### Draft Basin Optimization Yield Study

| Comment ID | Commentor   | Technical or Editorial Comment | Topic                                      | Page Number | Section ID | Quoted Text                                                                                                                                         | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|-------------|--------------------------------|--------------------------------------------|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CT-3       | Chad Taylor | Editorial                      | missplaced word                            | 13          | 3.2.3.1    | <i>The simulated groundwater elevation declines in the northern ELPMA are consistent with previous model scenarios evaluated in for the GSP ...</i> | Remove the unnecessary <i>for</i> in the last sentence of the last paragraph on the page.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CT-4       | Chad Taylor | Editorial                      | Inconsistent values                        | 15-16       | 3.3.1      | <i>The resulting groundwater production rates were 16,656 AFY in the WLPMA and 16,420 AFY in the ELPMA (Table 3-3)</i>                              | The values referenced in this text don't match those in Table 3-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CT-5       | Chad Taylor | Technical                      | Rampdown and water budget                  | 19          | 3.4.1.3    | <i>...inflows exceed outflows by approximately 500 AFY in the Basin-wide Rampdown Scenario.</i>                                                     | Could the rampdown volume and rate for the WLPMA have been reduced if the simulation of pumping reduction resulted in a closer correlation of inflow and outflow? Was the difference between inflow and outflow necessary to recover from historical water level declines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CT-6       | Chad Taylor | Editorial                      | Inconsistent values                        | 20          | 3.4.2.2    | <i>...however, it should be note that simulated groundwater elevations exhibited a declining trend over the 37-year model period.</i>               | In other sections of the report the model period is identified as 47 years.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CT-7       | Chad Taylor | Editorial                      | Add comparison / compilation tables        | 22          | 4          |                                                                                                                                                     | Consider adding a table or tables in section 4 that summarize the Baseline, BOY Project, Basin-wide Rampdown, Differential Rampdown, and Sustainable Yield estimates for each management area to assist the reader in understanding the differences between the scenarios.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CT-8       | Chad Taylor | Editorial                      | Expand explanation                         | 24          | 5.1        |                                                                                                                                                     | Consider expanding the explanation of the rampdown period. As presented lay readers may not understand how the period from the fall of 2026 through the fall of 2039 equates to 14 years and is the appropriate denominator for calculating the rampdown period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CT-9       | Chad Taylor | General Technical              | Rampdown period and sustainable conditions | 24-25       | 5          |                                                                                                                                                     | It is not clear in Section 5 how water levels, which are the metric the BOY Study identifies will be used for assessing sustainability, are expected to react to the rampdown period. The model scenarios appear to indicate that over a 47 year period the annual groundwater production volumes pumped in the rampdown scenarios will achieve sustainability. However, the BOY Study does not appear to assess how long after reaching the rampdown pumping rate it will take for water levels to rise to the thresholds identified as sustainable. One assumes that prolonged pumping at rates in excess of the rampdown rate will result in water levels below the minimum thresholds in representative monitoring wells and it is not clear that one year of pumping at the rampdown rate at the end of the 14 year rampdown period will be sufficient to facilitate water level recovery. |

## DRAFT MEMORANDUM

To: Chad Taylor, PG, CHg, LPVB Watermaster TAC Administrator  
From: Bob Abrams, PhD, PG, CHg., LPVB Watermaster TAC Member  
Date: January 23, 2026

**Subject: Comments on the Draft Basin Optimization Yield (BOY) Study for the Las Posas Valley Basin (LPVB) Report and the Draft Water Year 2025 Annual Report**  
**Project No.: 091-01**

---

This memorandum is provided to transmit my comments on the draft LPVB BOY Study report and the draft Water Year 2025 Annual Report. Both draft reports are generally well-written. My email submittal contains four electronic files: (1) a native Excel spreadsheet of comments for the BOY Study report; (2) a native Word file providing suggested revisions to the BOY Study report Executive Summary (in Track Changes); (3) a native Word file providing suggested revisions to BOY Study report Conclusions (in Track Changes); and (4) a native Excel spreadsheet of comments for the Annual Report. Items 2 and 3 are also provided as **Attachments 1 and 2** to this memorandum.

The suggested revisions to the Executive Summary and Conclusions are provided in an attempt highlight the major finding of the BOY Study report. That is, Rampdown is not needed if the two projects described in the report are implemented as scheduled. **Attachments 1 and 2** are not necessarily provided as replacements for the respective sections of the report. Rather, they are provided as suggested text that may improve the messaging of the BOY Study report, which may help the layperson understand the main outcome of the BOY Study.

I should also note that my interpretation of the Judgment is that Rampdown should be the Initial Operating Yield minus the BOY, or 40,000 acre-feet per year (AFY) minus 36,860 AFY. Accordingly, the Rampdown should be 3,140 AF, or approximately 224 AFY over the 14-year period between now and 2040. Further, my understanding is that the Judgment does not contemplate a no-project Rampdown or Rampdown Rate.

## **Attachment 2**

**Recommended Edits to Executive Summary and Conclusions Sections,  
Draft Basin Optimization Yield Study, prepared by Bob Abrams, PhD**

### **Attachment 1: Suggested Revisions to Executive Summary**

In conformance with the Judgment adjudicating groundwater rights in the Las Posas Valley Groundwater Basin (Basin), this report presents the results of the first Basin Optimization Yield (BOY) Study. The results of this BOY Study indicate that if the projects selected from the Basin Optimization Plan (BOP), Project 2 and Project 5, are implemented as scheduled, the BOY is 36,860 acre-feet per year (AFY).<sup>1</sup> BOP Project 2 is the purchase of imported water from Calleguas Municipal Water District (CMWD) for Basin replenishment. BOP Project 5 is an Arroyo Simi-Las Posas water acquisition project. It is anticipated that Rampdown will not be necessary during this five-year period, but could be implemented if conditions change based on monitoring, production levels, or failure to achieve anticipated progress implementing the BOP-identified projects.

The initial scope of this Study was reviewed by both the Technical Advisory Committee (TAC) and Policy Advisory Committee (PAC) for the Basin. The BOY was estimated using numerical groundwater model simulations that incorporated differing groundwater production rates and imported water associated with BOP Projects 2 and 5. The scenarios modeled included a Baseline, Project, and Rampdown Scenarios.

Two numerical groundwater models were utilized for this BOY Study. For the East Las Posas Management Areas (ELPMA), the groundwater model developed by CMWD was used. For the West Las Posas Management Areas (WLPMA), the Coastal Plain Model (CPM) developed by United Water Conservation District (UWCD) was used. The CPM incorrectly characterizes the boundary between the ELPMA and WLPMA (i.e., the Somis Fault), which allows groundwater to flow from the WLPMA to the ELPMA, contrary to conditions observed in the field. This reduces the simulated effectiveness of Project 2 in the WLPMA. Therefore, the BOY of 36,860 AFY should be considered a minimum value, because water levels observed in the field will increase more than the increase simulated by the CPM. This model error should be rectified prior to the 2030 BOY Study.

In the Baseline Scenario, groundwater production equaled the Initial Operating Yield of 40,000 AFY set by the Judgment. In the Projects Scenario, groundwater production was reduced at nine wells owned and operated by Zone Mutual Water Company (ZMWC), Ventura County Waterworks District 19 (VCWWWD 19), and Ventura County Waterworks District 1 (VCWWWD 1). The reduced groundwater production was replaced with imported water consistent with BOP Project 2. BOP Project 5 is a continuation of imported water that is currently discharged to Arroyo Simi-Las Posas outside of the Basin and therefore did not require any modifications to the numerical models. The Rampdown Scenario was developed to provide an estimate of the Rampdown that may be required in the unlikely event that BOP Projects 2 and 5 are not implemented as scheduled.

---

<sup>1</sup> In the Judgment, WY 2026 is defined as the period October 1, 2026 through September 30, 2027 and WY 2029 is defined as the period October 1, 2029 through September 30, 2030.

Simulated groundwater production at the Initial Operating Yield of 40,000 AFY was determined to be unsustainable because modeled future groundwater elevations at several Key Wells, or representative monitoring points, fell below the minimum threshold (MT) groundwater elevations established in the Groundwater Sustainability Plan (GSP) for the Basin. In the Projects Scenario, the BOY (the estimated yield that is projected to be available to achieve sustainable groundwater management by 2040) was determined to be 36,860 AFY. It should be noted that BOP Projects 2 and 5 rely on other water agencies for implementation. Thus inter-agency coordination is critical. Initial discussions between the Watermaster and these agencies have begun, but coordination agreements between the agencies have not yet been drafted.

In the unlikely event that BOP Projects 2 and 5 are not implemented, the BOY Study evaluated the Rampdown and Rampdown Rate for the Basin for two scenarios (in addition to the analysis required by the Judgment). In the first scenario, referred to as the Basin-wide Rampdown Scenario, groundwater production was reduced uniformly in all management areas relative to the Initial Operating Yield of 40,000 AFY until groundwater conditions avoided the undesirable results specified in the GSP. In this Scenario, the Operating Yield for WYs 2026-2029, without implementation of BOP Projects 2 and 5, was determined to be approximately 32,000 AFY.

If BOP Project 2 and 5 are not implemented, Rampdown under the first scenario is 8,000 AFY of groundwater production. Under this Rampdown scenario, groundwater production was reduced by 3,683 AFY in the WLPMA, 4,112 AFY in the ELPMA, and 205 AFY in the Epworth Gravels Management Area. The Rampdown Rate in the absence of projects was determined by dividing the Rampdown by the 14-year period over which it will be implemented. The no-projects Rampdown rate would be 571 AFY.

The no-projects Operating Yield may be higher than 32,000 AFY if circumstances indicate that a uniform Rampdown for all management areas is not appropriate pursuant to the Judgment's provisions on differential Rampdown. Thus, in the second Rampdown scenario, referred to as the Differential Rampdown Scenario, Rampdown differed by management area. Under this scenario the Operating Yield, in the absence of projects, was determined to be 33,942 AFY, and the overall Rampdown was 6,058 AFY. Groundwater production was reduced in this scenario by 3,683 AFY in the WLPMA, 2,261 AFY in the ELPMA, and 113 AFY in the Epworth Gravels Management Area. This scenario avoided undesirable results while maintaining higher overall groundwater production rates than the Basin-wide Rampdown Scenario.

It should be noted that three additional projects were identified in the BOP that could be implemented prior to WY 2040. These additional projects were not simulated in the 2025 BOY Study but should be considered for the 2030 BOY Study under the Judgment's standard for inclusion. These projects have the potential to raise the Basin Optimization Yield, and thus the Sustainable Yield, to the target 40,000 AFY by WY 2039. It should also be noted that WY 2025 groundwater extractions were only 32,656 AF and

WY 2024 groundwater extractions were only 28,031 AF.<sup>2</sup> Thus, the error in the CPM noted above and the low actual groundwater extractions during the last two WYs further support the determination that Rampdown is not presently needed if BOP Projects 2 and 5 are implemented as scheduled.

---

<sup>2</sup> These values are from the [Draft Water Year 2025 Annual Report](#) (note that the California Department of Water Resources [DWR] defines WY 2025 as the period October 1, 2024 through September 30, 2025). The Draft Water Year 2025 Annual Report notes that 86% of groundwater extractions had been reported by the time the draft report was released.

## **Attachment 2: Suggested Revisions to Conclusions**

Based on numerical modeling, with consideration of the inherent limitations of the models, the results of this BOY Study indicate that if BOP Project 2 and BOP Project 5 are implemented as scheduled, the BOY for WY 2026 through WY 2029 is 36,860 AFY, rendering Rampdown unnecessary at present. However, if these projects are not implemented as scheduled, the BOY may be as low as 32,000 AFY, which would require Rampdown to reduce the Operating Yield of the Basin so that it is equal to the BOY (and Sustainable Yield) of the Basin by the fall of 2039. In this case, the Judgment states that “following the first Basin Optimization Yield Study, Rampdown of the Operating Yield will commence in annual steps, if necessary” (Judgment §4.9.1.3).

The Baseline scenario includes 40,000 AFY of groundwater production for the Basin, as defined in the Judgment as the Initial Operating Yield. If BOP Projects 2 and 5 are not implemented as scheduled, this BOY Study report outlines two potential no-project Rampdown scenarios for the Watermaster to consider. The first is a Basin-wide Rampdown that reduces groundwater production by 20%, relative to the Baseline Scenario groundwater production of 40,000 AFY, in all management areas of the Basin (Sections 3.4.1 and 5.1).

The Judgment provides that a Differential Rampdown could be implemented that would result in “localized restrictions on extractions” (Judgment §4.10.3). This process includes, but is not limited to, committee consultation and a list of specific findings relative to the implementation of projects and the avoidance of undesirable results (Judgment §4.10.3.1). Although the process to implement a Differential Rampdown is more complex, this BOY Study finds that the Differential Rampdown approach avoids undesirable results while preserving higher overall groundwater production rates in the Basin.

Thus, the second no-project Rampdown scenario is a Differential Rampdown that reduces groundwater production in the ELPMA and Epworth Gravels Management Areas by 11%, relative to the Initial Operating Yield, and reduces groundwater production in the WLPMA by 20% relative to the Initial Operating Yield (Sections 3.4.2 and 5.2).

However, as noted above, Rampdown is unnecessary if BOP Projects 2 and 5 are implemented as scheduled.

## **Attachment 3**

### **Draft Recommendation Report – Draft Las Posas Valley Basin Groundwater Sustainability Plan Water Year 2025 Annual Report**

# LAS POSAS VALLEY TECHNICAL ADVISORY COMMITTEE

January 29, 2026

## RECOMMENDATION REPORT

**To:** Las Posas Valley Watermaster

**From:** Las Posas Valley Watermaster Technical Advisory Committee, prepared by Chad Taylor, Administrator and Chair

**Re:** Recommendation Report – Draft Las Posas Valley Basin Groundwater Sustainability Plan Water Year 2025 Annual Report

The Las Posas Valley Watermaster Technical Advisory Committee (TAC) provides this Recommendation Report regarding the Draft Las Posas Valley Basin Groundwater Sustainability Plan Water Year 2025 Annual Report (WY 2025 Annual Report) in response to a Las Posas Valley Basin Watermaster (Watermaster) committee consultation request dated January 15, 2026. Annual reporting of groundwater conditions and progress toward sustainability are required by the Sustainable Groundwater Management Act (SGMA) and Santa Barbara Superior Court judgment in Las Posas Valley Water Rights Coalition, et al., v. Fox Canyon Groundwater Management Agency (Judgment).

The TAC discussed the WY 2025 Annual Report in a regular TAC meeting on January 20, 2026. TAC comments on the WY 2025 Annual Report were provided to the TAC Administrator by each TAC member in tabular formats and are attached to this Recommendation Report. These specific comments have been incorporated into the recommendations presented below and will be provided to the Watermaster in the original Microsoft Excel format to aid in tracking comment and recommendation responses.

The TAC will review this Recommendation Report and discuss and consider voting to approve it in a regular meeting on September 16, 2025.

### TAC RECOMMENDATIONS

#### 1. RECOMMENDATION 1: PROVIDE ADDITIONAL DETAIL REGARDING HOW CHANGE IN STORAGE ESTIMATES ARE CALCULATED

The criteria for selecting the wells used and methods applied in estimating changes in groundwater storage are unclear and should be better documented. TAC review identified apparent inconsistencies in the information presented for wells in change in storage calculations, raising questions regarding the data and methods applied to these estimates. Specifically:

- Figure 2-32 uses 07R02 to estimate change in storage for one cell, but Figure 2-19 does not show WL data for that well. How was the change in storage determined?
  - Well 06R01 was used in another cell, but Figure 2-19 shows the WL data as NA. It is unclear what data was used to estimate change in storage.
  - Notably, there are other wells in this area with water level data, including 05D01, 32H03, 27H03, 25H01, 30D01, 07K02, 08H02. These do not appear to have been used to estimate the change in storage.
- The change in groundwater level value used for well 06R01 on Figure 2-32 is inconsistent with Figures 2-18 and 2-19, which do not report a change in groundwater level for this well.
  - The 06R01 change in groundwater level value of -128.3 appears to exert a strong influence in the overall storage change result for the West Las Posas Management Area (WLPMA).
  - This value should be verified and an explanation of the source of this value should be provided and caveated, as appropriate.
- The change in groundwater level value used for well 08L03 on Figure 2-32 is inconsistent with Figures 2-18 & 2-19, which do not report a change in groundwater level for this well.
  - The value of -16.7 used is inconsistent with other wells in western WLPMA (i.e., 08G04 and 17F05), which had positive changes in groundwater levels.
  - The 08L03 change in groundwater level value of -16.7 should be reassessed as it appears to exert a strong influence in the overall storage change result for WLPMA.
  - At a minimum, an explanation of the source of this value should be provided and caveated, as appropriate.
- The change in groundwater level value used for well 10D02 of -38.2 shown on Figure 2-19 and used in the storage change calculations (Figure 2-32), does not appear to be valid as it appears to have been calculated using an anomalous value from water year 2024 (see figure for this well in Appendix A).
  - This value should be reassessed as it appears to exert a strong influence in the overall storage change result for ELPMA.
  - At a minimum, the use of this value should be flagged.
- The series of linear regressions used for estimating storage changes presented in Table 2-8 are limited to the Fox Canyon Aquifer. Consider methods that could estimate storage changes in the other Las Posas Valley Basin (LPVB) aquifers.

### **1.1 Recommendations:**

- Provide the criteria used to select which wells are included in the estimation of storage change.
- Clearly document the methodology used in estimating storage change and how individual wells affect the estimates.
- Consider flagging wells with anomalous change in water level values and/or those that individually influence change in storage estimates for large portions of the LPVB.

- Evaluate the potential to estimate annual changes in storage in the Shallow Alluvial, Grimes Canyon, and Epworth Gravels aquifers.

### **1.2 Technical Rationale for Recommendation:**

There are instances of disagreement between figures that include water levels and those that present changes in groundwater storage. These inconsistencies are not explained in the draft WY 2025 Annual Report and the methodology for estimating changes in groundwater storage are also not well documented. Transparent presentation of these methodologies, the criteria used in selecting what data are used, and consistent presentation of those data should be included in the annual report.

### **1.3 Summary of Facts in Support of Recommendation:**

- Water level records for several wells used to estimate changes in groundwater storage are inconsistent between figures
- The methodology for selecting which data are used for estimating changes in groundwater storage and the methodologies applied in generating those estimates are unclear.

## **2. RECOMMENDATION 2: CONSIDER ADDING NEW SURFACE WATER DISCHARGE GAGES WITHIN THE BASIN**

As noted in section 2.1.3 there is currently only one surface water discharge gage on the Arroyo Simi-Las Posas. Additional surface water discharge gaging would be useful for evaluating conditions in the LPVB and tracking the success of projects and management actions.

### **2.1 Recommendations:**

Evaluate adding new surface water discharge gages with the LPVB.

### **2.2 Technical Rationale for Recommendation:**

Surface water discharge information is important to tracking water budgets, assessing changes in local conditions, and assessing the benefits of projects and management actions in a groundwater basin.

### **2.3 Summary of Facts in Support of Recommendation:**

- There is currently only one gage in the LPVB on the Arroyo Simi-Las Posas.
- Additional discharge gages would provide the Watermaster with more information to assess conditions and plan and implement projects and management actions in the LPVB.

### **3. RECOMMENDATION 3: REVIEW AND CONSIDER SIGNIFICANT EDITS TO TEXT IDENTIFIED BY TAC**

There are significant text edits and requests for clarification identified through the TAC review that should be considered by the Watermaster in preparation for finalizing the WY 2025 Annual Report. Specific recommendations are referenced below.

#### **3.1 Recommendations:**

- The Executive Summary indicates that resolutions, the Basin Optimization Plan, allocation system, and Basin Optimization Yield Study (BOY Study) have helped to fill data gaps. Please provide additional information regarding how these items have filled data gaps.
- Please contextualize conditions in the LPVB in relation to the BOY Study the Watermaster is working to complete along a similar timeline to the WY 2025 Annual Report. Specific discussion of the production in water year 2025 in comparison to the yield evaluations in the BOY Study would be beneficial for stakeholders.
- Section 2.1.1 references problems associated with collected water level data from well 02N21W16J03, including not being able to measure water levels in the well in water year 2025. Please explain why another well cannot take the place of well 02N21W16J03.
- Please provide a quantification of the number of non-reporting wells alluded to in section 2-2 and include assessment of how much of the overall groundwater extraction from the LPVB these non-reporting wells represent.
- The titles for Figures 2-7, 2-8, 2-20, and 2-21 indicate that the figures include groundwater elevation contours, but contours are not included on these figures. Please change the titles of these figures to reflect only the information that is included in each figure.
- Please include explanations for wells without water level measurement values on figures, like well 30M02 on Figure 2-10 and multiple WLPMA wells on Figures 2-16 and 2-17.
- Please explain why groundwater elevations reported for wells 07K02 and 08H02 were not used in contouring East Las Posas Management Area (ELPMA) groundwater levels and why wells 17F05, 08G04, and 35P02 were not used in the WLPMA.
- The comparison of water storage credits accrued by Calleguas Municipal Water District (CMWD) at the end of 2015 and the end of 2025 in section 2.4.2 highlights the fact that no water has been stored in WLPMA by CMWD since the end of 2015. Please add information regarding this change in water storage practices.
- The total water available reported in section 2.4 is actually the volume of water use. Please add an explanation that the volume of water available exceeded these amounts because imported water purchases were not capped.
- Figure 2-32 is not referenced in the text, please add a reference to this figure in section 2.6.
- On Figures 2-16 and 2-17 well 12H01 located in the WLPMA has anomalous groundwater elevations compared to surrounding wells. Please either omit or note

this anomalous value and pursue additional investigation into how representative the water levels from this well are and what aquifer they should be assigned to.

- On Figure 3-2 the wells without laboratory data are shown as '0/0'. It would be clearer to label these wells with 'NA/NA' or something similar to clearly show that groundwater sample analysis was not performed on samples from these wells, and not that the laboratory results were zero.
- Discussion of annual and cumulative storage changes in the ELPMA should include footnotes and explanations alerting readers that the values are inclusive of CMWD Aquifer Storage and Recovery (ASR) storage operations; thus, the values presented are not representative of storage changes attributable to ELPMA groundwater pumping. These notes should also include explanation of why CMWD ASR water is considered stored water and what that means.
- Please provide additional discussion of the variation in water levels in comparison to Minimum Thresholds which are shown on Figure 2-19 and summarized in section 3.1.1. Are the statements that groundwater production exceeds recharge intended to describe a local condition?
- Please consider including ongoing work on the CMWD ASR project and the upcoming monitoring network evaluation in the discussion of planned activities for the upcoming water year in section 3.4.

### **3.2 Technical Rationale for Recommendation:**

Technical rationale for each recommendation above is included in the context of the recommendation.

### **3.3 Summary of Facts in Support of Recommendation:**

A summary of facts for this recommendation is not applicable.

## **4. RECOMMENDATION 4: REVIEW EDITORIAL COMMENTS PROVIDED BY TAC IN TABULATED COMMENT MATRIX**

The TAC members each prepared detailed tabulated comments numbered by commentor with references to specific section and page numbers and quoted text. Many of these comments are editorial in nature and identify apparent errors and/or recommended edits in the draft WY 2025 Annual Report.

### **4.1 Recommendations:**

Consider revising the text to address the comments in Comment ID numbers BB-1, 2, 3, 11, 12, and 13; BA-9, 10, and 11; and TM-4 and 5.

### **4.2 Technical Rationale for Recommendation:**

See individual editorial comments for rationale.

### **4.3 Summary of Facts in Support of Recommendation:**

A summary of facts for this recommendation is not applicable.

## 5. TALLY OF COMMITTEE MEMBER VOTES

[this section will be modified as necessary following discussion and voting by the TAC]

| TAC Member                           | Vote |    |         |        |
|--------------------------------------|------|----|---------|--------|
|                                      | Yes  | No | Abstain | Absent |
| Chad Taylor, Chair                   |      |    |         |        |
| Tony Morgan, East LPV Representative |      |    |         |        |
| Bob Abrams, West LPV Representative  |      |    |         |        |

## REPORT OF BASES FOR MAJORITY AND MINORITY COMMITTEE MEMBER POSITIONS

The TAC vote to present the recommendations above to the Watermaster was unanimous, as indicated above. The bases for the unanimous positions are described for each recommendation above. [this will be modified as necessary following discussion and voting by the TAC]

## **Attachment 1**

### **Specific Comments from the Las Posas Valley Basin Technical Advisory Committee, Draft WY 2025 Annual Report**

## Specific Comments from the Las Posas Valley Basin Technical Advisory Committee

### Draft WY 2025 Annual Report

| Comment ID | Commentor   | Technical or Editorial Comment | Topic                  | Page Number         | Section ID          | Quoted Text                                                                                                                                                                                                                                                                                                                                                                                                                  | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|-------------|--------------------------------|------------------------|---------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BB-1       | Bryan Bondy | Editorial                      | Groundwater Production | vi & 2-6            | ES & Table 2-3      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                          | Executive Summary text and Table 2-3 values of LPV production are slightly different.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BB-2       | Bryan Bondy | Editorial                      | Groundwater Production | vi & 2-6            | ES & Table 2-3      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                          | Executive Summary text says WY 25 groundwater production was ~6,000 AF higher than WY 24, but the difference between the production for these years in Table 2-3 is only 4,626 AF.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BB-3       | Bryan Bondy | Editorial                      | Groundwater Production | vi & 2-14           | ES & Table 2-8      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                          | Executive Summary text says ELPMA cumulative groundwater storage change is ~2,000 AF since 2016 while Table 2-8 says it was only 314 AF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BB-4       | Bryan Bondy | Technical                      | Change in Storage      | N/A                 | Figure 2-32         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                          | The change in groundwater level value used for well 06R01 is inconsistent with Figures 2-18 & 2-19, which do not report a change in groundwater level for this well. The 06R01 change in groundwater level value of -128.3 appears to exert a strong influence in the overall storage change result for WLPMA. This value should be verified and an explanation of the source of this value should be provided and caveated, as appropriate.                                                                                                                                                            |
| BB-5       | Bryan Bondy | Technical                      | Change in Storage      | N/A                 | Figure 2-32         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                          | The change in groundwater level value used for well 08L03 is inconsistent with Figures 2-18 & 2-19, which do not report a change in groundwater level for this well. The value of -16.7 used is inconsistent with other wells in western WLPMA (i.e., 08G04 and 17F05), which had positive changes in groundwater levels. The 08L03 change in groundwater level value of -16.7 should be reassessed as it appears to exert a strong influence in the overall storage change result for WLPMA. At a minimum, an explanation of the source of this value should be provided and caveated, as appropriate. |
| BB-6       | Bryan Bondy | Technical                      | Change in Storage      | N/A                 | Figures 2-19 & 2-32 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                          | The change in groundwater level value used for well 10D02 of -38.2 shown on Figure 2-19 and used in the storage change calculations (Figure 2-32), does not appear to be valid as it appears to have been calculated using an anomalous value for WY 2024 (please see figure for this well in Appendix A). This value should be reassessed as it appears to exert a strong influence in the overall storage change result for ELPMA. At a minimum, the use of this value should be caveated.                                                                                                            |
| BB-7       | Bryan Bondy | Technical                      | Data Gaps              | vii                 | ES                  | "These steps have helped to close data gaps identified in the GSP..."                                                                                                                                                                                                                                                                                                                                                        | It is unclear how the actions listed prior to the quoted text (i.e., resolutions, BOP, allocation system, and BOYS) have filled data gaps identified in the GSP.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BB-8       | Bryan Bondy | Technical                      | ELPMA Storage          | Various             | Global Comment      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                          | Discussion of ELPMA annual and cumulative storage changes should be caveated to remind the reader that the values are inclusive of Calleguas ASR storage operations; thus, the values presented are not representative of storage changes attributable to ELPMA groundwater pumping.                                                                                                                                                                                                                                                                                                                    |
| BB-9       | Bryan Bondy | Technical                      | Groundwater Levels     | Figures 2-16 & 2-17 | N/A                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                          | Well 12H01 located in the WLPMA has anomalous groundwater level elevations compared to surrounding wells, which should be noted/caveated. Further investigation is warranted to determine if groundwater levels measured in this well are representative of the Fox Canyon Aquifer.                                                                                                                                                                                                                                                                                                                     |
| BB-10      | Bryan Bondy | Technical                      | Groundwater Levels     | Figures 2-16 & 2-17 | N/A                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                          | It is unclear why groundwater levels reported for wells 07K02 and 08H02 were not used in contouring of ELPMA groundwater levels. Same comment for wells 17F05, 08G04, and 35P02 in WLPMA.                                                                                                                                                                                                                                                                                                                                                                                                               |
| BB-11      | Bryan Bondy | Technical                      | Groundwater Production | vi                  | ES & Table 2-3      | "Groundwater elevations declined from the previous water year..."                                                                                                                                                                                                                                                                                                                                                            | Consider adding "generally" before "declined" to recognize the fact that groundwater levels did not fall in all monitored wells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BB-12      | Bryan Bondy | Technical                      | Groundwater Production | N/A                 | Tables 2-3 & 2-6    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                          | Groundwater extraction values in Tables 2-3 and 2-6 do not agree (32,655 AF vs sum of values = 30,990 AF), a 1,665 AF difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BB-13      | Bryan Bondy | Technical                      | Groundwater Production | N/A                 | Figures 2-28 & 2-29 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                          | The groundwater pumping bar for WY 2025 is inconsistent with the pumping value reported in Table 2-2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BB-14      | Bryan Bondy | Technical                      | Total Water Available  | 2-12                | 2.4                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                          | The reported total water available is actually the water that was used, which is an OK proxy, but the text should note that the actual amount of water that was available exceeded these amounts because imported water purchases were not capped.                                                                                                                                                                                                                                                                                                                                                      |
| BA-1       | Bob Abrams  | Technical                      | Improved explanation   | 2-1                 | Section 2.1.1       | <i>The First Periodic Evaluation of the GSP recommended removing this well from the groundwater monitoring network, and groundwater elevations were not measured in this well in water year 2025. However, FCGMA is working toward a solution by which groundwater elevations could be measured using a sonic water level meter, albeit at a lower resolution than those measured by a direct groundwater level sounder.</i> | It would be useful to explain why another well cannot take its place, if that's the case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## Specific Comments from the Las Posas Valley Basin Technical Advisory Committee

### Draft WY 2025 Annual Report

| Comment ID | Commentor   | Technical or Editorial Comment | Topic                           | Page Number | Section ID      | Quoted Text                                                                                                                                                                                                                                                                                                                                        | Comment                                                                                                                                                                                                                                                                              |
|------------|-------------|--------------------------------|---------------------------------|-------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BA-2       | Bob Abrams  | Editorial                      | Groundwater elevation figures   | 2-2         | Section 2.1.2.2 | <i>Groundwater flow direction information is limited by the relatively small number of monitoring wells screened solely within the Epworth Gravels aquifer. In both the fall of 2024 and spring of 2025, groundwater elevations were highest in well 30M05, and lowest in well 29F06 (Figures 2-7 and 2-8).</i>                                    | There are no contours in these figures, as stated in the figure titles. Change titles.                                                                                                                                                                                               |
| BA-3       | Bob Abrams  | Technical                      | Groundwater elevation figures   | 2-2         | Section 2.1.2.2 | Water year 2025 groundwater elevations in the Epworth Gravels aquifer were similar to, or slightly higher than water year 2024 groundwater elevations (Figures 2-9 and 2-10). Overall, groundwater elevations in the Epworth Gravels aquifer are higher than they were in 2015 (Figure 2-10).                                                      | Discuss the reason why is there no value for well 30M02 on Figure 2-10. It is understood that wells are not always accessible when staff arrive, but an explanation is warranted.                                                                                                    |
| BA-4       | Bob Abrams  | Technical                      | Need for additional information | 2-3         | Section 2.1.2.4 | Within the ELPMA, groundwater elevations are generally highest along Arroyo Las Posas, in the southern part of the management area, as well as along the northeastern boundary of the management area (Figures 2-16 and 2-17).                                                                                                                     | Why no measurements in several WLPMA wells in fall? It is understood that wells are not always accessible when staff arrive, but an explanation is warranted.                                                                                                                        |
| BA-5       | Bob Abrams  | Technical                      | Groundwater elevation figures   | 2-3         | Section 2.1.2.5 | <i>Groundwater elevation measurements in the Grimes Canyon aquifer are sparse and there are no key wells in the Grimes Canyon aquifer (Figures 2-20 and 2-21). Therefore, there are no wells with established minimum thresholds or measurable objectives against which current conditions can be evaluated.</i>                                   | There are no contours on Figures 2-20 and 2-21. Titles should be changed.                                                                                                                                                                                                            |
| BA-6       | Bob Abrams  | Technical                      | Need for addition information   | 2-3         | Section 2.1.2.5 |                                                                                                                                                                                                                                                                                                                                                    | As above, there should be discussion of why there were no measurements at 19P02 in spring. And no changes in WLMPA in fall. And no changes in ELMPA in spring.                                                                                                                       |
| BA-7       | Bob Abrams  | Technical                      | Need for additional information | 2-3         | Section 2.1.3   | <i>Gauge 841A, maintained by the Ventura County Watershed Protection District (VCWPD) in the Arroyo Simi, is the only current surface water monitoring point in the LPV Basin (Figure 2-25; Streamflow at Gauge 841A). The average daily flow in water year 2025 was approximately 42% of the average daily flow over the past 20 water years.</i> | Shouldn't another gage be added? This would help with annual reporting and basin sustainability. Discuss.                                                                                                                                                                            |
| BA-8       | Bob Abrams  | Editorial                      | Verify number                   | 2-7         | Section 2.4.2   | <i>At the end of the 2025 water year, CMWD had accrued approximately 25,192 AF of storage credits in the WLPMA...</i>                                                                                                                                                                                                                              | So, no ASR storage in the WIPMA since 2015? Maybe add a few words to state this?                                                                                                                                                                                                     |
| BA-9       | Bob Abrams  | Editorial                      | Acronym needs definition        | 2-11        | Section 2.5     | <i>Similar to Tables 2-1 and 2-2, the groundwater extractions for water years 2021 and 2022 presented in Table 2-6 represent a combination of reported AMI-estimated extractions for the period from October 1, 2020, through September 30, 2022</i>                                                                                               | Please define AMI.                                                                                                                                                                                                                                                                   |
| BA-10      | Bob Abrams  | Editorial                      | Figure Notes error              | Figure 2-28 | Section 2.6     | <i>1) Storage change for water years 2016 through 2022 is estimated using the VRGWF</i>                                                                                                                                                                                                                                                            | The figure is for the ELPMA. Wasn't the Callegaus ELP model used for this?                                                                                                                                                                                                           |
| BA-11      | Bob Abrams  | Editorial                      | Figure Notes error              | Figure 2-29 | Section 2.6     | <i>1) Storage change for water years 2016 through 2022 is estimated using the VRGWF</i>                                                                                                                                                                                                                                                            | The figure is for the ELPMA. Wasn't the Callegaus ELP model used for this?                                                                                                                                                                                                           |
| BA-12      | Bob Abrams  | Editorial                      | Figure call-out                 | Figure 2-32 | ???             |                                                                                                                                                                                                                                                                                                                                                    | There does not appear to be a figure call-out for Figure 2-32 and no discussion either (e.g., why only show change of storage for Spring 2024-2025?)                                                                                                                                 |
| BA-13      | Bob Abrams  | Technical                      | Data for Figure 2-32            | Figure 2-32 | ???             |                                                                                                                                                                                                                                                                                                                                                    | Where do the data come from for wells 08L03 and 06R01 on Figure 2-32? They are not shown on Figure 2-19.                                                                                                                                                                             |
| BA-14      | Bob Abrams  | Technical                      | Relation to BOYS                | 3-4         | Section 3.1.1   | <i>The Watermaster is currently exploring an in-lieu surface water delivery project to reduce groundwater production in this area and allow groundwater elevations to recover to levels that are higher than the minimum thresholds.</i>                                                                                                           | Is this in-lieu delivery project the same as the one in the BOYS? If so, would be useful to say so to avoid confusion.                                                                                                                                                               |
| TM-1       | Tony Morgan | General Technical              | GW elevations                   | vi          | Exec Summary    | <i>Continued declines in groundwater elevations in the WLPMA are not consistent with the sustainability goal for the LPV.</i>                                                                                                                                                                                                                      | The DRAFT BOYS shows several hydrographs with declining water levels for the various scenarios. Some start above the MT and end below the MT. This statement suggests that the wells with declining trends in the BOYS are not consistent with the sustainability goal of the basin? |

## Specific Comments from the Las Posas Valley Basin Technical Advisory Committee

### Draft WY 2025 Annual Report

| Comment ID | Commentor   | Technical or Editorial Comment | Topic                              | Page Number | Section ID   | Quoted Text                                                                                                                                                                                                                | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|-------------|--------------------------------|------------------------------------|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TM-2       | Tony Morgan | Technical                      | basin sustainability               | vi          | Exec Summary | <i>Reported groundwater production from the LPV was 32,660 AF in water year 2025,</i>                                                                                                                                      | Interesting that GW production in a critically dry year was less than the Operational Yield of 40,000 AFY and is within the range of the sustainable yield of 30,630+/- 3,500? AFY of the baseline scenario in BOYS (Table 3-2).                                                                                                                                                                                                                                                                                                                                                                                                            |
| TM-3       | Tony Morgan | Technical                      | GW production                      | 2-4         | 2-2          | <i>...and do not include estimates of extractions from non-reporting wells based on AMI data</i>                                                                                                                           | Probably useful to quantify the number of non-reporting wells in the text and provide their estimated groundwater production. Are the non-reporting wells thought to account for <1% of the overall groundwater extractions or is it more significant?                                                                                                                                                                                                                                                                                                                                                                                      |
| TM-4       | Tony Morgan | General Editorial              | editorial                          | 2-4         | 2-2          | <i>The estimated sustainable yield of the WLPMA ranges from approximately 10,200 to 12,600 AFY (FCGMA 2024). The estimated sustainable yield of the ELPMA ranges from approximately 16,900 to 21,500 AFY (FCGMA 2024).</i> | are these citations FCGMA 2024a or 2024b?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TM-5       | Tony Morgan | General Editorial              | editorial                          | 2-10        | 2.4.2        | <i>Table 2-5</i>                                                                                                                                                                                                           | Rounding errors(?) in Table 2-5. See net injection totals for CY2018, 2019, 2020, WY2024, WY2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TM-6       | Tony Morgan | Technical                      | CMWD injections                    | 2-11        | 2.5          | <i>b Total water available in the LPV does not include CMWD ASR injections which are considered stored water in the ELPMA.</i>                                                                                             | Why are the CMWD injections not considered "available" in LPB? Aren't those waters available to CMWD?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TM-7       | Tony Morgan | Technical                      | Table 2-8                          | 2-14        | 2.6.1.2      | <i>The series of linear regressions are limited to the FCA.</i>                                                                                                                                                            | Is it possible to provide an estimate of the storage change for the other aquifers by comparing similar water year types in the 2016-2022 and providing an inferred general range? For example, Dry Years 2016 and 2018 showed -237 and -296 AF in the GC aquifer, so maybe a range of -240 to -300 AF would work for this table. Keep it simple, round the values to nearest 10 AF. Couldn't we further flesh out Table 2-8 with these ranges? They would need to have footnotes to explain how they were derived, but would provide a more complete picture albeit with some educated guestimates. See separate sheet for example values. |
| TM-8       | Tony Morgan | Technical                      | groundwater production v. recharge | 3-4         | 3.1.1        | <i>...and likely reflects groundwater production that exceeds groundwater recharge</i>                                                                                                                                     | Per Fig. 2-19 other nearest monitored wells are at or above the their respective MTs. Does this suggest that the "...groundwater production...exceeds groundwater recharge..." is only a localized hydrogeologic condition and not indicative of the overall conditions of the basin?                                                                                                                                                                                                                                                                                                                                                       |
| TM-9       | Tony Morgan | Technical                      | change in groundwater storage      | 5-37        | Figure 2-32  |                                                                                                                                                                                                                            | Figure 2-32 uses 07R02 to estimate change in storage for one cell, but Figure 2-19 does not show WL data for that well. How was the change in storage determined? Well 06R01 was used in another cell, but Figure 2-19 shows the WL data as NA. Where did the data to estimate change in storage come from? Why were other wells with WL data (e.g., 05D01, 32H03, 27H03, 25H01, 30D01, 07K02, 08H02) apparently not used to compute the change in storage? Suggest including the criteria used to select wells used to estimate change in storage.                                                                                         |
| TM-10      | Tony Morgan | Technical                      | Nitrate                            |             | Figure 3-2   |                                                                                                                                                                                                                            | Figure 3-2 - the wells lacking lab data are shown as 0/0. Suggest relabeling them as NA/NA to reflect that the groundwater was not analyzed from this well, not that the lab result was zero.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TM-11      | Tony Morgan | Technical                      | Upcoming Activities                | 3-6         | 3.4          | <i>Planned Activities for the Upcoming Water Year</i>                                                                                                                                                                      | Should the Calleguas ASR Project Operations Plan be included? How about the monitoring / data gaps plan?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TM-12      | Tony Morgan | Technical                      | Representative Monitoring Wells    | 3-2         | 3.1.1        | <i>Table 3-1</i>                                                                                                                                                                                                           | No WLs reported for 16J03. This warrants an explanation in the text as to why WLs were not collected and what is being done to minimize the potential for this happening again.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## **Attachment 4**

### **Revised TAC Questions on Protective Order Regarding United Water Conservation District Model**

In December 2025, the members of the Las Posas Valley Basin Technical Advisory Committee (TAC) were asked by the Las Posas Valley Basin Watermaster (Watermaster) to acknowledge and sign an agreement to be bound by a Protective Order governing access to the United Water Conservation District (UWCD) Coastal Plain groundwater model.

During discussion of this request in a public TAC meeting held on January 6, 2026, TAC members raised questions and concerns about their ability to access data and information required for review of ongoing Las Posas Valley Basin groundwater management within the context of Brown Act governed public meetings, as required by the Las Posas Valley Basin Adjudication Judgment (Las Posas Valley Water Rights Coalition, et al. v. Fox Canyon Groundwater Management Agency, Santa Barbara Sup. Ct. Case No. VENC100509700).

TAC members expressed specific concern about the lack of clear boundaries on what data and information could be shared in public meetings and noted that the Watermaster is required to publish documents that include maps, charts, tables, and other information derived from the Coastal Plain model.

In response to TAC concerns, Watermaster staff reported that UWCD considers most model-related technical materials to fall under the Protective Order and that Watermaster staff also question what materials could be shown or discussed in detail in public meetings and presented in published reports. Staff further suggested that TAC compile specific questions for Watermaster counsel to clarify what materials fall under the Protective Order (PO) and how they may be used in public meetings. Draft questions for this purpose follow:

- Why is it necessary to have a PO specifically for the Basin Optimization Yield Study (BOYS) project?
  - To date, the TAC has not formally requested model files in support of the Draft BOYS review.
  - There is insufficient time for TAC to review additional information for the BOYS should it be made available (with or without the PO).
- However, the TAC did request and receive tabular data of pumping that was used as inputs to model simulations for the BOYS analyses and model results in the form of water budget data and simulated head hydrographs for representative monitoring wells in the West Las Posas Management Area (WLPMA). Would those data have been subject to the PO? If so, would inclusion of these data, slides prepared by Dudek summarizing model results, and summary tables prepared by TAC to facilitate review and discussion have been subject to the PO?
- The information contained in the Draft BOYS could potentially be interpreted as be protected under the PO and cannot be shared, discussed, etc. with anyone who has not signed the PO. However, the PO also exempts information in the public domain

(page 3, lines 21-28). Since a link to the Draft BOYS document was included in the publicly available agenda packets issued by the Watermaster for both the TAC and PAC meetings, does that mean that the Draft BOYS document is not subject to the PO?

- The Draft BOYS document has not been labeled as “SUBJECT TO PROTECTIVE ORDER – HIGHLY CONFIDENTIAL – ATTORNEY’S EYES ONLY” as stipulated in V.b. of the PO, therefore we can assume it is NOT subject to the PO. Does the Watermaster agree?
- Section VI c lists the persons/entities allowed to access the model files. Stakeholders are not on this list. How are stakeholders supposed to gain access to this information?

Administrative questions:

- If the information that would be provided pursuant to the PO is to be discussed at a TAC meeting, how are public/stakeholders in attendance supposed to engage in the discussions?
- Typically, TAC agendas include maps, graphs, data tables, etc. from documents and supporting data the Watermaster has requested the TAC review. In addition, during TAC meetings these and similar data and information are sometimes shared onscreen to facilitate technical discussions. Assuming the TAC members have signed the PO and are free to share model files, how can this be accomplished with stakeholders in attendance at the TAC meetings? The TAC has Brown Act compliance requirements and cannot hold closed meetings in this case.
- If the TAC members have NOT signed the PO, then the TAC members cannot receive information from the Coastal Plain model and may potentially be hindered from discussing, sharing, or otherwise reviewing in public meetings work product developed based on model files. This is contrary to the TAC’s mission. What alternative mechanisms for conducting routine TAC business are proposed?
- How is TAC supposed to know what is considered protected pursuant to PO in the case of receiving information that Watermaster or its consultants have extracted or summarized from Protected Information? (It does not appear that the PO requires Watermaster to mark such information subject to PO.) For example, the Watermaster EO made statements that suggest that Watermaster believes that the BOYS and/or other associated documents/files provided by Watermaster to TAC for its BOYS review contain protected information but these documents/files were not marked as such.

In December 2025, the members of the Las Posas Valley Basin Technical Advisory Committee (TAC) were asked by the Las Posas Valley Basin Watermaster (Watermaster) to acknowledge and sign an agreement to be bound by a Protective Order governing access to the United Water Conservation District (UWCD) Coastal Plain groundwater model.

During discussion of this request in a public TAC meeting held on January 6, 2026, TAC members raised questions and concerns about their ability to access data and information required for review of ongoing Las Posas Valley Basin groundwater management within the context of Brown Act governed public meetings, as required by the Las Posas Valley Basin Adjudication Judgment (Las Posas Valley Water Rights Coalition, et al. v. Fox Canyon Groundwater Management Agency, Santa Barbara Sup. Ct. Case No. VENC100509700).

TAC members expressed specific concern about the lack of clear boundaries on what data and information could be shared in public meetings and noted that the Watermaster is required to publish documents that include maps, charts, tables, and other information derived from the Coastal Plain model.

In response to TAC concerns, Watermaster staff reported that UWCD considers most model-related technical materials to fall under the Protective Order and that Watermaster staff also question what materials could be shown or discussed in detail in public meetings and presented in published reports. Staff further suggested that TAC compile specific questions for Watermaster counsel to clarify what materials fall under the Protective Order (PO) and how they may be used in public meetings. Draft questions for this purpose follow:

- Why is it necessary to have a PO specifically for the Basin Optimization Yield Study (BOYS) project and not for TAC review efforts for previous documents that relied on modeling results?
  - To date, the TAC has not formally requested model files in support of the Draft BOYS review.
  - However, the TAC did request and receive tabular data of pumping that was used as inputs to model simulations for the BOYS analyses and model results in the form of water budget data and simulated head hydrographs for representative monitoring wells in the West Las Posas Management Area (WLPMA). Would those data have been subject to the PO? If so, would inclusion of these data, slides prepared by Dudek summarizing model results, and summary tables prepared by TAC to facilitate review and discussion have been subject to the PO?
- Initial interpretations of the PO suggest that the information contained in the Draft BOYS is covered by the PO (page 3, lines 17-21) and cannot be shared, discussed, etc. with anyone who has not signed the PO. However, the PO also exempts

information in the public domain (page 3, lines 21-28). Since a link to the Draft BOYS document was included in the publicly available agenda packet  for both the TAC and PAC meetings, does that mean that the Draft BOYS document is not subject to the PO? 

- The Draft BOYS document has not been labeled as “SUBJECT TO PROTECTIVE ORDER – HIGHLY CONFIDENTIAL – ATTORNEY’S EYES ONLY” as stipulated in V.b. of the PO, therefore we ~~can~~ assume it is NOT subject to the PO? 
- Section VI c lists the persons/entities allowed to access the model files. Stakeholders are not on this list. How are stakeholders supposed to gain access to this information?

Administrative questions:

- If the information ~~in the Draft BOYS document or other model files received from UWCD~~ are to be discussed at a TAC meeting, how are public/stakeholders in attendance supposed to engage in the discussions? 
- Typically, TAC agendas include maps, graphs, data tables, etc. from documents and supporting data the Watermaster has requested the TAC review. In addition, during TAC meetings these and similar data and information are sometimes shared onscreen to facilitate technical discussions. Assuming the TAC members have signed the PO and are free to share model files, how can this be accomplished with stakeholders in attendance at the TAC meetings? The TAC has Brown Act compliance requirements and cannot hold closed meetings in this case.
- If the TAC members have NOT signed the PO, then the TAC members cannot discuss, share, etc. the model files between themselves or speak with their constituents about the data. This is contrary to the TAC’s mission. What alternative mechanisms for conducting routine TAC business are proposed? 

Another bullet:

How is TAC supposed to know what is considered protected pursuant to PO in the case of receiving information that Watermaster or its consultants have extracted or summarized from Protected Information? (It does not appear that the PO requires Watermaster to mark such information subject to PO.) For example, the Watermaster EO made statements that suggest that Watermaster believes that the BOYS and/or other associated documents/files provided by Watermaster to TAC for its BOYS review contain protected information but these documents/files were not marked as such.

Hi Chad - I think this could be simplified. It really boils down to:

1. Why now and why for the BOYS. TAC did not request what it believes to be protected information. The review schedule does not allow for review of new information that might be made available upon executing the PO.
2. Assuming that TAC members sign the PO, how will TAC know what information provided by Watermaster is to be considered protected, as TAC receives information from Watermaster, not directly from UWCD and Watermaster does not appear to be obligated to make information as protected when sharing with others subject to the PO. This would be particularly challenging when Watermaster provides information that it extracted, summarized, excerpted from documents provided by UWCD.
3. How can TAC fulfill its duties that involve protected information while also complying with the brown act (i.e., TAC cannot meet outside of public meeting and, therefore, has no way to discuss protected information without revealing the protected information.)
4. How can TAC prepare a recommendation report based on review of protected information without revealing protected information and, therefore, violating the protective order.